
Roads
 and Bridges:

The Unseen Labor Behind
Our Digital Infrastructure

W R I T T E N B Y
Nadia Eghbal

Open up your phone.
Your social media,
your news, your
medical records, your
bank: they are all using
free and public code.

2

3

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

C O N T E N T S

Preface

Foreword

Executive Summary

Introduction

History and Background of
Digital Infrastructure

How software gets built

How not charging for software
transformed society

A brief history of free and public software
and the people who made it

How The Current System Works

What is digital infrastructure, and how
does it get built?

How are digital infrastructure projects
managed and supported?

Why do people keep contributing to
these projects, when they’re not
getting paid for it?

Challenges Facing Digital Infrastructure

Open source’s complicated
relationship with money

Why digital infrastructure support
problems are accelerating

The hidden costs of ignoring infrastructure

Sustaining Digital Infrastructure

Business models for digital infrastructure

Finding a sponsor or donor for

an infrastructure project

Why is it so hard to fund these projects?

Institutional efforts to support digital infrastructure

Opportunities Ahead

Developing effective support strategies

Priming the landscape

The crossroads we face

Appendix

Glossary

Acknowledgements

Table of Contents

4

5

8

11

18

19

23

29

37

38

46

53

58

59

66

77

89
90

97

106

109

124

125

127

136

139

140

142

Preface

Our modern society—everything

from hospitals to stock markets to

newspapers to social media—runs on

software. But take a closer look, and

you’ll find that the tools we use to build

software are buckling under demand.

5

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

F O R E w O R D

Foreword

I stumbled upon the problem described in this report on a hunch.

Having previously worked in startups, and then venture capital, I

saw the enormous amounts of money being poured into software

companies. But as an amateur software developer, I knew that I had

never done any of it alone. I used free and publicly available code

(also known as “open source” code), which I cobbled together and

offered up for personal or commercial purposes. Really, the people

behind those projects, whoever they were, had done most

of the work.

I mulled over this observation for several years, as I watched the

explosion of coding “bootcamps” graduating new software develop-

ers left and right, and as I watched startups raise tens of millions of

dollars selling products which I knew, under the hood, were

probably more public than proprietary code. Having previously

worked in the nonprofit sector, I immediately thought of public

goods and their associated challenges, yet this vocabulary was

strangely absent among my peers in software.

After I left my job in venture capital last year, I set off to explore the

paradox I couldn’t stop thinking about: that there were valuable

software tools that couldn’t be supported by commercial models,

and that they lacked any form of institutional support.

Funnily enough, open source code wasn’t on my original list. I had

mistakenly assumed, as had my peers, that these tools were an

example of a particularly well-supported public good in software.

When I brought up open source to friends and mentors, they gently

dissuaded me from pursuing the topic, encouraging me instead to

6

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

F O R E w O R D

find other examples that actually needed the help.

A few open source projects crossed my radar, however, and shat-

tered those assumptions. It turned out that sustainability challeng-

es were well-known among those who contributed to open source.

The more I dug, the more I found blog posts, articles, and frequent

public conversations about the stress and exhaustion felt by those

who maintain open source projects. Everybody knew someone else

I should talk to, and before I knew it, I had collected countless

stories on this topic.

I realized I had walked into a problem with which the producers

(open source contributors) were extremely familiar, but that the

consumers (software companies and other users of open source

code) were seemingly unaware of. That discrepancy made me want

to look more closely.

In addition, it seemed that open source itself was changing, perhaps

even bifurcating. I found myself having completely different conver-

sations with different generations of open source contributors. They

seemed to have divergent philosophies and values; they may as well

not have been using the same terminology. I learned that open

source had seen an explosion of production as well as demand in the

past three to five years, thanks to improvements in developer tools

and workflows. Today’s open source contributor looked very different

from an open source contributor ten years ago, much less thirty years

ago. And yet these different generations weren’t talking to each

other, making productive conversations about sustainability difficult.

7

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

F O R E w O R D

“A chance conversation with Ethan Zuckerman of the MIT

Center for Civic Media gave me an opportunity to share these

findings more widely.

I described to Ethan the problem I was seeing, though I didn’t know

exactly what it all meant or the vocabulary I should be using, and he

kindly put me in touch with Jenny Toomey of the Ford Foundation.

Jenny suggested I aggregate my findings into a report. In the process,

a narrative around our modern digital society, and the hidden infra-

structure that powers it, has emerged.

This report would not have happened without Ethan and Jenny

taking a chance on a half-baked idea that now, through the process

of writing, has been shaped into something more. I am extremely

grateful to both of them for their intuition. I am additionally grateful

to Michael Brennan and Lori McGlinchey for their guidance, perspec-

tive and enthusiasm in the editing process. Finally, and perhaps most

importantly, I am indebted to every person working in open source

who made their stories public for people like me to read, and espe-

cially those who took a moment out of their busy schedules to

humor me with a conversation or an email. This report is a collec-

tion of their wisdom, not mine. I am particularly grateful for early

conversations with Russell Keith-Magee, Eric Holscher, Jan Lehnardt,

Andrey Petrov, and Mikeal Rogers, all of whom continue to inspire

me with their patience and dedication to open source work. Thank

you for your kindness.

8

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

E x E C U T I v E S U m m A R y

Executive Summary

Our modern society—everything from hospitals to stock markets

to newspapers to social media—runs on software. But take a closer

look, and you’ll find that the tools we use to build software are

buckling under demand.

Nearly all software today relies on free, public code (called “open

source” code), written and maintained by communities of developers

and other talent. Much like roads or bridges, which anyone can walk

or drive on, open source code can be used by anyone—from compa-

nies to individuals—to build software. This type of code makes up

the digital infrastructure of our society today.

Just like physical infrastructure, digital infrastructure needs

regular upkeep and maintenance. In the United States, over half

of government spending on transportation and water infrastruc-

ture goes just to maintenance.1 But financial support for digital

infrastructure is much harder to come by. Currently, any financial

support usually comes through sponsorships, direct or indirect, from

software companies.

Maintaining open source code used to be more manageable.

Following the personal computer revolution of the early 1980s, most

commercial software was proprietary, not shared. Software tools

were built and used internally by companies, and their products

were licensed to customers. Many companies felt that open source

code was too nascent and unreliable for commercial use. In their

view, software was meant to be charged for, not given away for free.

Today, everybody uses open source code, including Fortune 500

1

https://www.cbo.gov/
publication/49910

9

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

E x E C U T I v E S U m m A R y

companies, government, major software companies and startups.

Sharing, rather than building proprietary code, turned out to be

cheaper, easier, and more efficient. This increased demand puts addi-

tional strain on those who maintain this infrastructure, yet because

these communities are not highly visible, the rest of the world has

been slow to notice. Most of us take opening a software application

for granted, the way we take turning on the lights for granted. We

don’t think about the human capital necessary to make that happen.

In the face of unprecedented demand, the costs of not supporting

our digital infrastructure are numerous. On the risk side, there are

security breaches and interruptions in service, due to infrastructure

maintainers not being able to provide adequate support. On the

opportunity side, we need to maintain and improve these software

tools in order to support today’s startup renaissance, which relies

heavily on this infrastructure. Additionally, open source work builds

developers’ portfolios and helps them get hired, but the talent pool

is remarkably less diverse than in tech overall. Expanding the pool

of contributors can positively affect who participates in the tech

industry at large.

No individual company or organization is incentivized to address the

problem alone, because open source code is a public good. In order

to support our digital infrastructure, we must find ways to work

together. Current examples of efforts to support digital infrastruc-

ture include the Linux Foundation’s Core Infrastructure Initiative and

Mozilla’s Open Source Support (MOSS) program, as well as numerous

software companies in various capacities.

Sustaining our digital infrastructure is a new topic for many, and

the challenges are not well understood. In addition, infrastructure

1 0

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

E x E C U T I v E S U m m A R y

projects are distributed across many people and organizations,

defying common governance models. Many infrastructure projects

have no legal entity at all. Any support strategy needs to accept and

work with the decentralized, community-centric qualities of open

source code. Increasing awareness of the problem, making it easier

for institutions to contribute time and money, expanding the pool of

open source contributors, and developing best practices and policies

across infrastructure projects will all go a long way in building a

healthy and sustainable ecosystem.

1 1

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N T R O D U C T I O N

Introduction

In 1998, a group of security experts in the UK got together to build a

free set of encryption tools for the Internet.

Soon everybody was talking about their project, called OpenSSL.

(The developers had used an existing Australian project, called

SSLeay, as their blueprint.) Not only was it comprehensive and

decently reliable, but it was free. Writing cryptography wasn’t easy,

and OpenSSL had solved a major pain point for develop-

ers worldwide.

By 2014, two-thirds of all Web servers were using OpenSSL, enabling

websites to securely pass credit card and other sensitive information

over the Internet.2

Meanwhile, the project continued to be informally managed by a

small handful of volunteers. A security consultant to the U.S.

Department of Defense, Steve Marquess, noticed that one contribu-

tor, Stephen Henson, was working full time on OpenSSL. Curious,

Marquess asked him what he did for income, and was shocked to

learn that Henson made one-fifth of Marquess’s salary.

Marquess had always considered himself to be a strong programmer,

but his skills paled in comparison to Henson’s. Like others, Marquess

had mistakenly assumed that someone as talented as Henson would

have a comfortable salary to match.

Henson had been working on OpenSSL since 1998. Marquess was

newer to the project, joining in the early 2000s, and had worked

with Henson for several years before learning of his income situation.

2

http://news.netcraft.com/
archives/2014/04/08/
half-a-million-widely-trust-
ed-websites-vulnerable-to-
heartbleed-bug.html

1 2

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N T R O D U C T I O N

Having worked with the Department of Defense, Marquess saw how

critical OpenSSL was, not just to their software, but to other indus-

tries around the world, from enterprise to aeronautics to health care.

Until that moment, he had “always assumed, (as had the rest of the

world) that the OpenSSL team was large, active, and well resourced.3” In

reality, OpenSSL wasn’t even able to support one person’s work.

Marquess decided he wanted to help. Although he contributed code

occasionally, he realized he could fill a more critical role on the

business side. Marquess started out by arranging small consulting

contracts through an existing nonprofit to help keep OpenSSL alive

in its leanest years.

As the volume of contracts grew, Marquess created the OpenSSL

Software Foundation (OSF) to provide an official vehicle for revenue.

Despite the number of individuals and companies relying on their

software, OSF never received more than $2,000 in donations per

year. Gross revenues (which came from consulting and contract

work) never broke $1M, and much of that went toward security-re-

lated testing (which could cost hundreds of thousands of dollars)

and server costs.

There was enough to pay the salary of one developer, Stephen

Henson. That meant that two-thirds of the Web relied on encryption

software maintained by just one full-time employee.

The OpenSSL team continued to work in relative obscurity until April

2014, when a Google engineer named Neel Mehta stumbled upon a

major flaw in OpenSSL’s software. Two days later, another engineer

at the Finnish company Codenomicon discovered the same problem.

Both of them immediately contacted the OpenSSL team.

3

Email interview with
Steve Marquess

1 3

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N T R O D U C T I O N

That bug, nicknamed Heartbleed, had been included in a 2011

update. It had gone unnoticed for years. Heartbleed could allow any

sophisticated hacker to capture secure information being passed to

vulnerable web servers, including passwords, credit card information,

and other sensitive data.

Joseph Steinberg, a cybersecurity columnist for Forbes, wrote that

“some might argue that [Heartbleed] is the worst vulnerability

found...since commercial traffic began to flow on the Internet.” 4

Thanks to wide media reporting, much of the nontechnical world

became familiar with the security bug, at least by name. Major

services like Instagram, Gmail and Netflix were affected by

Heartbleed.5 Reporters also drew attention to OpenSSL itself, and

how its team had struggled for years to support their work. OpenSSL

was a known concern among security experts, but the team did not

have adequate resources or attention to address the issues.

Of Heartbleed, Marquess wrote, “The mystery is not that a few over-

worked volunteers missed this bug; the mystery is why it hasn’t

happened more often.”

People expressed their support by sending donations to the founda-

tion. Although Marquess was grateful for their enthusiasm, the first

round of donations came out to roughly $9,000: not nearly enough

to sustain a team.

4

http://www.forbes.
com/sites/joseph-
steinberg/2014/04/10/
massive-internet-security-
vulnerability-you-are-at-
risk-what-you-need-to-do/

5

http://mashable.
com/2014/04/09/heart-
bleed-bug-websites-affect-
ed/#01gtseEchaqa

1 4

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N T R O D U C T I O N

Marquess took to the Internet to make an impassioned public plea

for funding:

“These guys don’t work on OpenSSL for money. They don’t do it

for fame (who outside of geek circles ever heard of them or

OpenSSL until ‘heartbleed’ [sic] hit the news?). They do it out of

pride in craftsmanship and the responsibility for something

they believe in.

It takes nerves of steel to work for many years on hundreds of

thousands of lines of very complex code, with every line of code

you touch visible to the world, knowing that code is used by

banks, firewalls, weapons systems, web sites, smart phones,

industry, government, everywhere. Knowing that you’ll be

ignored and unappreciated until something goes wrong.

There should be at least a half dozen full time OpenSSL team

members, not just one, able to concentrate on the care and

feeding of OpenSSL without having to hustle commercial

work. If you’re a corporate or government decision maker in a

position to do something about it, give it some thought. Please.

I’m getting old and weary and I’d like to retire someday. 6

After Heartbleed, OpenSSL finally got more of the funding it

needed—at least for now. They currently have enough money to pay

four full-time employees for three years. But a year and a half into

that funding, Marquess isn’t sure what will come next.

Marquess said that Heartbleed was a boon for them, admitting it

was a “little ironic” that publicity had helped elevate their cause. But

after funding runs out and the world moves on, Marquess thinks

6

http://veridicalsystems.
com/blog/of-money-re-
sponsibility-and-pride/

1 5

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N T R O D U C T I O N

they could be back in the same situation as pre-Heartbleed, and

perhaps even worse: the client work that took Marquess years to

build has dried up, since the team works full-time on OpenSSL right

now and no longer has time for contracts.7

Marquess himself is approaching retirement. He is the only person

willing to handle the business and operational tasks associated with

OpenSSL, including taxes, sourcing client work, and managing

donors. The rest of his team prefers to focus on writing and main-

taining code. He can’t hire someone else into his position when he

retires, either, because he currently doesn’t take an income.

Marquess remarked, “I don’t know that we can hold this together for

more than a couple of years”.8

OpenSSL’s story is not unique, and in many ways, Marquess thinks

they are the lucky ones. Countless other projects continue to go

unheard of and unsupported. These projects make up the critical

digital infrastructure that powers today’s software, and in turn, every

aspect of our daily lives.

Checking email, reading the news, checking stock prices, shopping

online, going to the doctor, calling customer service—whether we

realize it or not, everything we do is made possible by projects like

OpenSSL. Without them, the technology that modern society relies

upon simply could not function.

Many of these projects are built and maintained by volunteers and

offered to the public for free. Anyone, from Facebook to an amateur

programmer, can use that code to build their own apps. And they do.

If it sounds unbelievable that, as Marquess puts it, a “ragtag group of

7

Phone interview with Steve
Marquess

8

Email interview with Steve
Marquess

1 6

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N T R O D U C T I O N

amateurs could outcompete huge corporations with their money and

resources,” 9 consider how this work reflects the rise of peer-to-peer

collaboration around the world.

Unlikely startups like Uber or AirBnB exploded into major corporate

powerhouses in just a few years, challenging longstanding industries

like transportation and hospitality. Musicians make a name for

themselves through YouTube or Soundcloud instead of big record

labels. Creative people fund their ideas through crowdfunding

platforms like Kickstarter or Patreon.

Similarly, these infrastructure projects sprang from passionate,

creative developers who thought “I could do this better,” collaborat-

ing to build and release code to the world. The difference is that

millions of people rely on this code to lead functional daily lives.

Because code is less charismatic than a hit YouTube video or

Kickstarter campaign, there is little public awareness of and appreci-

ation for this work. As a result, there is not nearly enough institu-

tional support for the output that sparked an information revolution.

But we can’t ignore it for much longer.

In the past five years, our reliance on software, and the free and

public code that supports it, has accelerated. Technology has worked

its way into every aspect of our lives. And the more people use

software, the more software gets built, and the more work is

required to maintain it all.

Every successful startup needs public infrastructure to succeed, yet

no one company is motivated to act on its own. As the world blazes

ahead into a modern age of startups, code and technology,

9

Phone interview with Steve
Marquess

1 7

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N T R O D U C T I O N

infrastructure continues to lag behind. The cracks in the foundation

are not obvious right now, but they are widening. After years of

unprecedented growth that propelled us into a new era of wealth

and prosperity, we must act now in order to ensure that the world

we built in such a short period of time does not come unexpectedly

crashing down.

To understand how to protect our future, first we need to understand

software itself.

History and Background
of Digital Infrastructure

"Open source became a movement –

a mentality. Suddenly infrastructure

software was nearly free."

 – Mark Suster, Upfront Ventures

1 9

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w S O F T wA R E G E T S B U I LT

10

https://instagram.com/
about/legal/libraries/

How software gets built

Every website or mobile app we use, no matter how simple, is made

up of many smaller components, just as a building is made up of

bricks and concrete.

For example, imagine you want to post a photo to Facebook. You

open your Facebook mobile app, which triggers Facebook’s software

to show your news feed.

You upload a photo from your phone, add a comment, then hit

“submit.” Another part of Facebook’s software, responsible for storing

data, remembers who you are and posts the photo to your profile.

Finally, a third part of Facebook’s software takes the information

that you typed into your phone and shows it to all your friends

around the world.

Although these interactions take place on Facebook, Facebook did

not actually build all the pieces necessary to make it possible for

you to post to their app. Instead, they use free, public code, made

available on the Internet by volunteers for anybody to use. Facebook

does not publicly list the projects they use, but another company

they own, Instagram, lists and thanks some of these projects on

their homepage and mobile app.10

Using public code is more efficient for a company like Facebook than

building every piece themselves. Building software is like construct-

ing a building. A construction company wouldn’t build its hammers

and drills from scratch, or source and chop all of the lumber them-

selves. Instead, it buys the tools from a hardware store, and the

2 0

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w S O F T wA R E G E T S B U I LT

lumber from a third-party supplier, to make the job go faster.

Thanks to permissive licenses, companies like Facebook or Instagram

are not obligated to pay for this code, but are free to profit hand-

somely from it. This is not unlike a trucking company (Instagram)

using a highway (public code) to transport goods for commercial

purposes (Instagram’s app).

Mike Krieger, one of Instagram’s cofounders, emphasized this point

in 2013, encouraging other founders to “borrow instead of building

whenever possible. There are hundreds of fantastic [tools]...that can save

you time and let you focus on actually building out your product.” 11

Some tools that a software company uses are:

Frameworks: Software frameworks provide basic scaffolding and struc-
ture. Think of it as the blueprint for the entire application. Like a blue-
print, a framework lays out how the application might look on mobile, or
how information gets saved into the database. Examples include Rails
and Django.

Languages: Programming languages are the communication backbone
of software, like construction workers on a building site using English to
communicate. Languages help different software components perform
actions and talk to one another. For example, if you create an account on
a website and click “sign up,” that application might use the languages
JavaScript and Ruby to tell the database to save your information.
Popular examples of languages include JavaScript, Python and C.

Libraries: Libraries are “prefabricated” pieces of code that make it faster
to write software, just as a construction company might buy prefabricat-
ed windows instead of building them from scratch. For example, instead

11

https://opbeat.com/blog/
posts/picking-tech-for-your-
startup/

2 1

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w S O F T wA R E G E T S B U I LT

of a developer writing their own user login system for an application,
they can use a library called OAuth. Instead of writing their own code to
visualize data on a website, they can use a library called d3.

Databases: Databases store information (for example, user profiles,
email addresses, or credit card information) so that it can be used
throughout the application. Whenever an application needs to remember
something about you, it stores that information in the database. Popular
examples of databases include MySQL and PostgreSQL.

Web and application servers: Web and application servers facilitate
various requests that users make on the Internet. They can be thought of
as dispatchers or telephone operators. For example, if you type a URL
into your browser bar, a Web server will send back the associated page.
If you send a message to a friend on Facebook, your message first goes
to an application server, which determines who you are trying to contact,
then routes your message to your friend’s account. Popular examples of
Web servers are Apache and Nginx.

Some of these tools, such as servers and databases, cost money,

especially as companies scale. This makes them easier to monetize.

For example, Heroku, a cloud-based platform that offers server and

database support, offers basic services for free, but charges for

higher levels of data or traffic. Heroku powers many major websites,

including Toyota and Macy’s, and was acquired by Salesforce.com in

2010 for $212M.12

Other types of developer tools, such as frameworks, many libraries,

and programming languages, are harder to charge for, and are often

built and maintained by volunteers.

Because these types of tools look more like information goods than

12

http://techcrunch.
com/2010/12/08/breaking-
salesforce-buys-heroku-for-
212-million-in-cash/

2 2

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w S O F T wA R E G E T S B U I LT

services that can be turned on or off, charging for them would

severely limit their adoption. As a result, anyone—whether a bil-

lion-dollar company or a teenage coder—can use these components

to build their own software for free.

For example, one of the libraries that Instagram uses, according to

its homepage, is Appirater. Appirater is a library that makes it easy

to remind iPhone users to rate a mobile app. It was created in 2009

by Arash Payan, a freelance developer based in Los Angeles. Payan

does not make any income from the project.

It is the equivalent of lumberyards, concrete plants and hardware

stores donating their raw materials to a construction company, then

continuing to support the company’s needs.

2 3

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w N O T C H A R G I N G F O R S O F T wA R E T R A N S F O R m E D S O C I E T y

How not charging for software
transformed society

An expected first reaction is: “Why did these developers make their

software free? Why not just charge for it?”

The reasons for public software lie in its rich political and social

history. But first, let’s examine a hard truth: our society wouldn’t be

where it is today if developers hadn’t made it free.

Free software makes it exponentially cheaper
and easier to build software.

Uber, a transportation service, recently announced that some devel-

opers had built a way to request cars through Slack, a team collabo-

ration app, instead of using Uber’s own mobile app. The project was

completed in 48 hours by a team of developers at App Academy, a

coding school.

Uber noted that the team was able to get the project done quickly

because they “implemented open libraries such as rails, geocoder, and

unicorn [sic] to speed up development and build on a solid

foundation.”13

In other words, the amount of coding that the team had to do them-

selves was greatly reduced because they were able to use free

libraries built by others.

Ruby Geocoder, for example, is a library built in 2010 and main-

tained by a freelance developer named Alex Reisner. Geocoder

13

https://devblog.uber.com/
uber-slack-a-weekend-a-sto-
ry-of-open-apis/

2 4

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w N O T C H A R G I N G F O R S O F T wA R E T R A N S F O R m E D S O C I E T y

makes it easy for an application to look up street addresses and

geographic coordinates.14

Unicorn is a server, built in 2009, which is maintained by a team of

seven contributors listed on its website and headed by a developer

named Eric Wong.15

It’s easier than ever to build new software, because there are more

prefabricated pieces of code to draw from. To return again to the

construction metaphor instead of constructing every piece of a

building from scratch, one can simply buy a prefabricated framework,

foundation and walls, then put them together like Legos.

As a result, new developers are minted every day, even if they them-

selves don’t necessarily know how to build the tools from scratch.

The Bureau of Labor Statistics expects the number of employed

software developers to rise 22% from 2012 to 2022—much faster

than average, compared to other occupations.16

Free software is directly responsible for
today’s current startup renaissance.

The cost of starting a company has dropped dramatically since the

first dotcom boom in the late 1990s. Venture capitalist and former

entrepreneur Mark Suster reflected on his experience in a

2011 blog post:

“When I built my first company starting in 1999 it cost $2.5

million in infrastructure just to get started and another $2.5

million in team costs to code, launch, manage, market & sell

our software. […]

14

http://www.alexreisner.com/
about

15

http://unicorn.bogomips.org/
CONTRIBUTORS.html

16

http://www.bls.gov/ooh/
computer-and-informa-
tion-technology/software-de-
velopers.htm

2 5

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w N O T C H A R G I N G F O R S O F T wA R E T R A N S F O R m E D S O C I E T y

The first major change in our industry was imperceptible to us

as an industry. It was driven by the introduction of open-

source software, most notably what was called the LAMP stack.

Linux (instead of UNIX), Apache (web server software), MySQL

(instead of Oracle) and PHP. Of course there were variants –

we preferred PostGres to MySQL and many people used other

programming languages than PHP.

Open source became a movement – a mentality. Suddenly infra-

structure software was nearly free. We paid 10% of the normal

costs for the software and that money was for software support. A

90% disruption in cost spawns innovation – believe me.17

The availability of free software components today (as well as

cheaper hosting and cloud services, like Amazon Web Services and

Heroku) means that a technology startup no longer requires millions

of dollars to get off the ground. Entrepreneurs can conceivably

release a product and find a market without spending a single dollar,

then raise money from venture capitalists only after they’ve shown

strong signs of demand.

Alan Schaaf, the founder of Imgur, a popular image-sharing site and

one of the top 50 most-trafficked sites in the world, famously said

that the only money he ever spent to start the company was seven

dollars to purchase the domain name. Imgur was profitable, and

Schaaf did not take any outside money for 5 years before raising $40

million from VC firm Andreessen Horowitz in 2014.18

Venture capitalists and other institutional investors, in turn, have

started writing smaller checks to companies, giving rise to new

17

http://www.bothsidesoft-
hetable.com/2011/06/28/
understanding-chang-
es-in-the-software-ven-
ture-capital-industries/

18

http://articles.latimes.
com/2014/apr/03/business/
la-fi-tn-imgur-40-million-
funding-20140402

2 6

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w N O T C H A R G I N G F O R S O F T wA R E T R A N S F O R m E D S O C I E T y

subsets of investing, including:

Seed stage: Venture firms providing the first round of funding, rather
than later-stage growth capital

Micro VCs: Venture firms loosely defined as less than $50 million under
management

Accelerators: Firms that provide small amounts of capital, often less
than $50,000, as well as advice and mentorship to early-stage compa-
nies

$10M can fund a hundred companies today, compared to one or two

in the 1990s.

Free software made it easier for people of all
demographics to learn to code, making
technology accessible to the world.

If you wanted to learn how to code at home today, you might start

by learning Ruby on Rails. Rails is a popular software framework and

Ruby is a programming language. Anyone with Internet access can

install these tools on any computer for free. Because they are free,

they are also very popular, which means there is plenty of informa-

tion online to help you get started, from formal tutorials to ques-

tion-and-answer forums. This means that learning how to code is as

accessible as teaching oneself to read and write English or French.

By comparison, software frameworks and languages that were not

open source required paying for access, using specific operating

2 7

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w N O T C H A R G I N G F O R S O F T wA R E T R A N S F O R m E D S O C I E T y

systems or other tools, and agreeing to licensing constraints that

could affect patents for any software built using the framework.

Today, it is difficult to find examples of frameworks and languages

that are not open source. One of the most famous examples of a

proprietary software framework is .NET, developed and released in

2002. In 2014, Microsoft announced that they were releasing a

version of .NET as an open source project, called .NET Core.

Audrey Eschright, a software developer, wrote about how open

source software helped her learn to code as a teenager in the

late 1990s:

“I wanted to learn to program but I didn’t have money. Not the

college student version of not having money—my family situa-

tion was low-income, but also highly chaotic….This is going to

seem strange to anyone [today], but at the time there were

basically two options for someone who wanted to write real

software: you could use a PC with Windows and pay extra for

Microsoft’s development tools, or you could have access to a

Unix system and use gcc….So my goal became to get access to

accounts on Unix systems so I could learn how to write code

and do cool stuff.19

Jeff Atwood, a longtime .NET developer, described his decision to

use Ruby for a new software project, Discourse, in 2013:

“Getting up and running with a Microsoft stack is just plain too

hard for a developer in, say, Argentina, or Nepal, or Bulgaria.

Open source operating systems, languages, and tool chains are

the great equalizer, the basis for the next great generation of

19

http://lifeofaudrey.com/
essays/love_and_money.html

2 8

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w N O T C H A R G I N G F O R S O F T wA R E T R A N S F O R m E D S O C I E T y

programmers all over the world who are going to help us

change the world.20

With the explosion of startups have come a number of initiatives to

teach people to code, whether they are children, teenagers, under-

served minorities, women or career switchers. Some examples

include Women Who Code, Django Girls, Black Girls Code, One

Month and Dev Bootcamp.

Some of these organizations are free, while others charge tuition. All

of them rely upon free software to teach their students. For example,

Django Girls has taught over 2,000 women to code, in 49 countries

around the world.21 Although the organization did not develop

Django themselves, they are able to use Django, which students

download and use for free, in their curriculum

Dev Bootcamp teaches career switchers to code, preparing everyone

from English teachers to military veterans to become professional

software developers. The program costs $12-14,000. Dev Bootcamp

teaches Ruby, JavaScript, Ruby on Rails and SQL, among other com-

ponents. All of these components are free for students to download

and use, and Dev Bootcamp does not have to pay to use these mate-

rials. Dev Bootcamp was recently acquired by Kaplan for an undis-

closed sum in 2014.22

If such critical pieces of software were not free, people from all

walks of life would not be able to take part in today’s technology

renaissance. There are still numerous social and economic barriers

that prevent many more from participating, as well as costs associat-

ed with physical equipment like laptops and an Internet connection,

but the programming tools themselves do not cost money.

21

https://djangogirls.org/

22

https://www.edsurge.com/
news/2014-06-25-dev-
bootcamp-no-longer-boot-
strapped-acquired-by-kaplan

20

http://blog.codinghorror.
com/why-ruby/

2 9

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

A B R I E F H I S T O R y O F F R E E A N D p U B L I C S O F T wA R E A N D T H E p E O p L E w H O m A D E I T

A brief history of free and public
software and the people who made it

Now that we’ve covered how making software free benefits society,

let’s look at how the software itself came about.

Although we’ve used the term “free software” to refer to software

that does not cost any money to its users, the term “free software” is

actually a highly contextualized term that refers specifically to the

software’s license properties. Free software advocates emphasize

that “free” refers to a political freedom rather than the price, and

sometimes use the Spanish word libre (meaning freedom, as opposed

to gratis, the Spanish word for free price) to clarify the distinction.

In the 1970s, when computers were still a nascent technology, pro-

grammers had to build their own computers and write custom

software themselves. Software was not yet standardized and was

not considered to be a monetizable product.

In 1981, IBM introduced the “IBM PC,” or “Personal Computer,”

bringing hardware to a mass market. Within a couple of years, custom

computer setups fell away as everybody adopted the IBM standard.

IBM became the dominant computer within a highly fractured

personal computer market, capturing over half of market

share by 1986.23

Along with standardized hardware, then, came an opportunity for

standardized software. Suddenly everyone wanted to turn software

into a business. IBM hired a then-unknown company called Microsoft

to write the operating system for its new PC. That operating system,

23

http://arstechnica.com/busi-
ness/2012/08/from-altair-to-
ipad-35-years-of-personal-
computer-market-share/2/

3 0

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

A B R I E F H I S T O R y O F F R E E A N D p U B L I C S O F T wA R E A N D T H E p E O p L E w H O m A D E I T

MS-DOS, was released in 1981. Other companies began to follow

suit, offering software under commercial licenses. These licenses

prevented the user from copying, modifying or redistributing

the software.

Proprietary software still exists today: for example, Adobe

Photoshop, Microsoft Windows, or GoToMeeting. While proprietary

software can be profitable for the company that builds and licenses

the product, its restrictions also limit its scope and distribution. Any

changes to the software’s design or implementation have to origi-

nate from the company itself. And proprietary software is expensive,

often costing hundreds of dollars and permitting the designated

purchaser to use only that copy.

Understandably, some computer scientists felt concerned about the

closed and proprietary direction that software was taking, believing

that it undermined the true potential of software. Richard Stallman, a

programmer at the MIT Artificial Intelligence Laboratory, felt particu-

larly strongly about the need for software to be free and modifiable.

Over the next couple of years, as several of his colleagues began

working on proprietary software projects, Stallman felt he could not

ignore the situation any longer. In 1983, he launched GNU, a free

operating system, and in doing so sparked what came to be known

as the “free software movement,” which galvanized a group of

people who believed that software could have a greater reach and

benefit to society if it were made freely available. Stallman later

founded the Free Software Foundation in 1985 to support GNU and

other free software efforts.

The Free Software Foundation defines free software as “software

3 1

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

A B R I E F H I S T O R y O F F R E E A N D p U B L I C S O F T wA R E A N D T H E p E O p L E w H O m A D E I T

that gives the user the freedom to share, study and modify it.”24 GNU

defines four freedoms associated with such software:

Freedom 0: The freedom to run the program as you wish, for any pur-
pose.

Freedom 1: The freedom to study how the program works, and change it
so it does your computing as you wish.

Freedom 2: The freedom to redistribute copies so you can help your
neighbor.

Freedom 3: The freedom to distribute copies of your modified versions to
others. By doing this you can give the whole community a chance to
benefit from your changes.25

The free software movement was, and continues to be, deeply

rooted in social advocacy. In 1998, when Netscape released the

source code for its popular browser, the conversation began to shift

from politics to technology.

Some technologists believed that focusing on the practical benefits

of free software would help bring its message to a wider audience.

For example, they pointed out that free software was cheaper to

build and could lead to superior software, because the public can

find bugs and contribute fixes. This type of pragmatism was distinct

from the moral obligation that Stallman and his supporters believed

they had to promote free software.

24

https://www.fsf.org/about/
what-is-free-software

25

https://www.gnu.org/philos-
ophy/free-sw.html

3 2

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

A B R I E F H I S T O R y O F F R E E A N D p U B L I C S O F T wA R E A N D T H E p E O p L E w H O m A D E I T

These technologists gathered in Palo Alto for a strategy session.

Christine Peterson, a nanotechnologist in attendance, suggested the

term “open source.”26 Shortly after, two attendees, Bruce Perens and

Eric Raymond, created the Open Source Initiative.

Software whose source code is publicly available is called “open

source.” It is analogous to being able to open up the hood of a car

and see what's inside, instead of having the engine sealed off from

view. Open source licenses always include a provision that allows

the public to use, modify, and redistribute the code. In this sense,

there is no legal difference between free software and open source

licenses. Indeed, some people have called open source a “marketing

campaign” for free software.

However, the most important distinction is the differing cultures

that each movement created. The open source software movement

broke away from the social and political associations with free

software by instead focusing on the practical benefits of software

development and encouraging wider creative and business applica-

tions. As Stallman himself wrote, “Open source is a development

methodology; free software is a social movement.” 27

Although “free software” and “open source software” are often

discussed together, they are politically distinct, the former being

more closely associated with ethics and the latter with pragmatism.

(The remainder of this paper will use the term “open source” to

emphasize the critical role it plays in software infrastructure.)

Open source created space for growing distinctions and styles of

software development, free from ethical complexities. One organiza-

tion might release its source code to the public, but only accept

26

http://opensource.org/
history

27

http://www.gnu.org/philos-
ophy/open-source-misses-
the-point.en.html

3 3

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

A B R I E F H I S T O R y O F F R E E A N D p U B L I C S O F T wA R E A N D T H E p E O p L E w H O m A D E I T

changes from a couple of contributors. Another organization might

require that the code is developed in public and accept changes

from anyone, so that more people could take part in the process. In

1997, Raymond wrote an influential essay called The Cathedral and

the Bazaar (later published as a book in 1999) which explored

these styles.

Today, open source has become a popular software practice for many

reasons, in terms of both efficiency and cost. It’s also how much of

digital infrastructure gets built. We’ve discussed how making this

software more freely available has benefitted all of society, but

open source has benefits for its creators, as well.

Open source is cheaper to build.
Before open source software existed, technology firms treated

software like any other paid product: a team of employees built

new software internally, then sold it to the public. While this

meant software had a clear business model, it also came with

increased development costs. Proprietary software requires a

full-time paid team to support its development, including develop-

ers, designers, marketers, and lawyers. It’s far cheaper to simply

crowdsource software, built and maintained by a community of

volunteer developers.

Open source is easier to distribute.
People are more likely to adopt software that is free to use and

modify than software that costs hundreds of dollars to license and

was developed in a black box. Not only will developers want to use

it for free, but they might be inclined to tell their friends to use it as

3 4

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

A B R I E F H I S T O R y O F F R E E A N D p U B L I C S O F T wA R E A N D T H E p E O p L E w H O m A D E I T

well, amplifying the effects of its distribution.

Open source is flexible to customize.
Open source software is free to copy and modify for one’s own

purposes, with various levels of permissiveness. This means that if a

developer wants to make improvements to a piece of software, he or

she can copy the project and change it. (This practice is called

“forking.”)

Many popular projects started as a modification of an existing piece

of software, including WordPress (content management system that

powers 23% of the world’s websites28), PostgreSQL (one of the

world’s most popular and fast-growing databases29), Ubuntu (operat-

ing system used by 10% of the world’s websites30), and Firefox (one

of the most popular web browsers in the world31).

WordPress began as an offshoot of an existing blogging project, b2

(also known as cafelog). Two software developers, Matt Mullenweg

and Mike Little, decided they wanted a better version of b2 and

subsequently forked the project. Mullenweg decided to fork b2,

rather than another project called TextPattern, because b2’s licenses

were more permissive. His original thought process from 2003 is

described below:

“What to do? Well, TextPattern looks like everything I could ever

want, but it doesn’t look like it’s going to be licensed under

something politically I could agree with. Fortunately, b2/

cafelog is GPL [GNU General Public License, a free software

license], which means that I could use the existing codebase to

create a fork.[...]

28

https://en.wikipedia.org/wiki/
WordPress

30

http://w3techs.com/tech-
nologies/details/os-ubuntu/
all/all

29

http://www.zdnet.com/
article/as-dbms-wars-contin-
ue-postgresql-shows-most-
momentum/

31

https://www.netmarketshare.
com/browser-market-share.
aspx?qprid=0&qpcustomd=0

3 5

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

A B R I E F H I S T O R y O F F R E E A N D p U B L I C S O F T wA R E A N D T H E p E O p L E w H O m A D E I T

The work would never be lost, as if I fell of [sic] the face of the

planet a year from now, whatever code I made would be free to

the world, and if someone else wanted to pick it up they could.32

If software were developed in a closed, proprietary environment,

developers would have no ability to change that software, unless

they worked at the company. If they tried to build their own

improved version to imitate the original, they might face intellectual

property concerns. With open source software, the developer can

simply change the software him- or herself and release it to the

public, as Mullenweg did. Open source software, then, enables rapid

proliferation of ideas.

Open source gives employees more
bargaining power.

Software takes time to learn, whether it’s a new programming

language or framework. If every company used a proprietary set of

tools, developers would be less inclined to change jobs, because

their technical skills only apply to that one place of employment.

They would have to be retrained in a new technology at their next

place of employment.33

When companies use open source technology, a developer has a

reusable set of skills, which leads to more freedom to work wherever

he or she prefers. For example, multiple companies might use the

same Ruby programming language in their software. In addition, if

the company’s product itself is open source, the output belongs to

the developer as much as it does the company. The developer can

take their work with them if they choose to leave the company

(versus, for example, being constrained by a non-disclosure

32

http://ma.tt/2003/01/
the-blogging-software-di-
lemma/

33

Thanks to Karl Fogel for
reminding me of this benefit.

3 6

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

A B R I E F H I S T O R y O F F R E E A N D p U B L I C S O F T wA R E A N D T H E p E O p L E w H O m A D E I T

agreement, if the code were proprietary). All of these benefits give

the employee more agency than he or she would have had with

proprietary software. Many companies today advertise their use of

open source software as a recruiting tactic, because it favors

the developer.

Open source has the potential to be more
stable and secure.

Theoretically, when a software project has many active contributors

and a thriving community, the code should be less vulnerable to

security flaws and disruptions in service. That’s because more

people would ideally be reviewing the code, looking for bugs and

fixing any problems that they see. By contrast, in a proprietary

software environment, the only people who would see the code

would be the team of people developing it. Instead of, say, 20 em-

ployees looking at the code at Oracle, a popular open source project

could have 2,000 volunteers reviewing the code for vulnerabilities.

(Note that this belief does not always match reality, and has created

the opposite problem: people mistakenly believing that more people

are reviewing open source software than actually are, when in

reality nobody is taking responsibility. This will be discussed in a

later section.)

Open source software clearly has a number of benefits. How do

these projects collectively fit into a broader ecosystem?

How The Current
System Works

"A lot of [our] members work in tech, either on

the web or on software. As a result, they work

on things that don’t last very long."

 – Tim Hwang, Bay Area Infrastructure Observatory

3 8

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H AT I S D I G I TA L I N F R A S T R U C T U R E , A N D H O w D O E S I T G E T B U I LT ?

What is digital infrastructure, and how
does it get built?

Earlier in this report, we compared building software to constructing

a building. Those public software components are what collectively

form our digital infrastructure. To understand this concept, consider

how physical infrastructure works.

Everybody relies upon a number of physical infrastructure projects

to facilitate our day-to-day lives. Turning our lights on, driving to

work, washing dishes: we may not often think about where our

water, roads or electricity come from, but we have physical infra-

structure to thank. Private and public partners work together to

build and maintain our transportation, sewage, water, electric, and

communication systems.

Similarly, although we do not often see or think about the apps and

software we use on a daily basis, all of them rely upon free and

public code to function. Together, in an increasingly digital society,

these open source projects make up our digital infrastructure.

However, there are several major differences between physical and

digital infrastructure, which affect how the latter is built and

sustained. In particular, there are differences in cost, maintenance,

and governance.

Digital infrastructure is faster and
cheaper to build.

Building physical infrastructure is notoriously expensive. These

3 9

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H AT I S D I G I TA L I N F R A S T R U C T U R E , A N D H O w D O E S I T G E T B U I LT ?

projects are physically large in scale and can take months or years

to complete.

The United States federal government spent $96 billion on infra-

structure projects in 2014, and state and local governments spent a

combined $320 billion in the same year. Slightly less than half (43

percent) of that spending went towards new construction; the re-

mainder was spent on operations and upkeep of existing

infrastructure.34

Proposing and funding new physical infrastructure projects can be

an extended political process. Transportation funding has been a

contentious topic in the United States for the past decade, where

the federal government faces a $16 billion shortfall for transporta-

tion funding.35 U.S. Congress recently passed the first multi-year

transportation bill in a decade, setting aside $305B for highways,

after years of political obstacles that prevented funding infrastruc-

ture from being funded more than two years at a time.36

Even after a new infrastructure project has been earmarked and

funded, it can take years to complete, fraught with uncertainties and

unforeseen obstacles. The Central Artery/Tunnel project in Boston,

Massachusetts, also known as the Big Dig, took nine years from

planning to initial construction. Its projected cost was $2.8 billion,

with a scheduled completion date for 1998. In reality, the project

ended up costing $14.6 billion and was not completed until 2007,

making it the most expensive highway project in the United States.37

By contrast, digital infrastructure does not have any of the costs

associated with building physical infrastructure, such as zoning a

location or purchasing materials. This makes it easy for anyone to

34

https://www.cbo.gov/publi-
cation/49910

35

http://thehill.com/policy/
transportation/255264-mc-
carthy-were-going-to-make-
sure-we-get-the-highway-
bill-done

36

http://www.wsj.com/
articles/house-passes-
five-year-transportation-
bill-1449167609

37

https://en.wikipedia.org/wiki/
Big_Dig

4 0

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H AT I S D I G I TA L I N F R A S T R U C T U R E , A N D H O w D O E S I T G E T B U I LT ?

propose a new idea and get started in very little time.

MySQL, the second most popular database in the world38 and part of

a critical collection of tools that helped launch the first tech boom,

was published by its authors, Michael Widenius and David Axmark,

in May 1995. It took less than two years to develop.39

Ruby, a programming language, took less than three years from its

initial conception in February 1993 to public release in December

1995. Its author, computer scientist Yukihiro Matsumoto, decided to

create the language after a conversation with his colleagues.40

Digital infrastructure changes frequently.
Because digital infrastructure is so cheap to build, the barriers to

entry are lower, and software tools change more frequently.

Physical infrastructure is built to last, which is partially why these

projects take so long to plan, fund, and build. The London

Underground, London’s public rapid transit system, was built in 1863;

the underground tunnels dug for the subway system are still in use

today.41 The Brooklyn Bridge, which connects the boroughs of

Brooklyn and Manhattan in New York City, was completed in 1883

and did not undergo any major renovations until 2010, over one

hundred years later.

Digital infrastructure not only requires frequent maintenance and

upkeep to be compatible with other software components, but its

usage and adoption changes frequently as well. A bridge built in the

middle of New York City will have fairly consistent and guaranteed

usage, commensurate with the rise or decline of the city’s

38

http://www.zdnet.com/
article/as-dbms-wars-contin-
ue-postgresql-shows-most-
momentum/

39

https://en.wikipedia.org/wiki/
MySQL

40

https://en.wikipedia.org/wiki/
Ruby_(programming_lan-
guage)

41

https://en.wikipedia.org/wiki/
London_Underground

4 1

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H AT I S D I G I TA L I N F R A S T R U C T U R E , A N D H O w D O E S I T G E T B U I LT ?

population. But a programming language or framework could be

extremely popular for several years, then fall out of favor when

something faster, more efficient, or simply trendier comes along.

For example, the graph below shows activity by source code devel-

opers using several different programming languages. The language

C, one of the most fundamental and widely used languages, has

dropped in market share as newer languages have entered the

market. Python and JavaScript, two currently popular languages, are

seeing a moderate rise over time. And Go, which was developed in

2007, has seen more activity in recent years.42

Tim Hwang, who runs the Bay Area Infrastructure Observatory,

which organizes group visits to physical infrastructure sites,

remarked on the difference in a 2015 interview with California

Sunday Magazine:

“A lot of [our] members work in tech, either on the web or on

42

Monthly code commits
by language. Commits
including multiple languages
are counted once for each
language. Black Duck’s Open
Hub pulls from over 650,000
open source projects. Data
accessed May 20, 2016.
https://www.openhub.net/
languages/compare

4 2

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H AT I S D I G I TA L I N F R A S T R U C T U R E , A N D H O w D O E S I T G E T B U I LT ?

software. As a result, they work on things that don’t last very

long. Their approach is, ‘We just hacked it, and we pushed it out

live,’ or ‘We just released it, and we can work out bugs later.’ A lot

of infrastructure is built for 100 years. You can’t have bugs. If you

do, the building will fall down. You can’t iterate it. It’s a practice

that exists outside of the members’ day-to-day experience.43

Because digital infrastructure changes so frequently, however, older

projects have a harder time finding contributors, because many

developers prefer to work on new and exciting projects. This phe-

nomenon has been referred to as “magpie developer” syndrome,

where developers are attracted to “new and shiny” things, instead of

the technology that works best for them and their users.44

Digital infrastructure does not have a central
organization to determine what gets
built or used.

Finally, perhaps the most striking difference between digital and

physical infrastructure, and one of the biggest challenges to its

sustainability, is that there is no organizing body to determine what

gets built or used in digital infrastructure.

Transportation, sewage and water projects are generally owned and

managed by the government, whether federal, state or local.

Communication and electric projects tend to be managed by private

companies. In both situations, infrastructure projects are funded by

a mix of private and public actors, either from the federal budget,

private company financing, or metered user fees.

In a stable, developed country, we rarely think about whether or

43

https://story.californiasunday.
com/tim-hwang-infrastruc-
ture-tourist

44

http://blog.codinghorror.
com/the-magpie-developer/

4 3

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H AT I S D I G I TA L I N F R A S T R U C T U R E , A N D H O w D O E S I T G E T B U I LT ?

how a road gets built or a building has electricity. Even for projects

that are privately owned or funded, the federal government has a

vested interest in guaranteeing that physical infrastructure gets built

and maintained.

Digital infrastructure projects, on the other hand, are conceived of

and built from the bottom up. It is akin to a group of citizens getting

together and deciding they want to build a bridge or create their

own sewage system. There is no authoritative body whose formal

permission is required to create new digital infrastructure.

The Internet itself does have two major governing bodies that help

set standards: the Internet Engineering Task Force and World Wide

Web Consortium.

The Internet Engineering Task Force (IETF) helps develop and set

voluntary standards for how information gets passed around the

Internet. For example, they are the reason why URLs start with

“HTTP”. They are also the reason why we have IP addresses—unique

identifiers assigned to your computer when it is connected to a

network. Originally a working group within the United States gov-

ernment in 1986, the IETF became an independent, international

organization in 1993.45 The IETF itself is run by volunteers, and

there are no membership requirements: anyone from the public may

join simply by declaring him- or herself a member.

The World Wide Web Consortium (W3C) helps set standards for the

World Wide Web. It was founded by Tim Berners-Lee in 1994. The

W3C tends to focus more exclusively on web pages and documents

(they are, for example, the reason why web pages use HTML for

basic formatting). They maintain the standards around the markup

45

https://en.wikipedia.org/
wiki/Internet_Engineer-
ing_Task_Force

4 4

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H AT I S D I G I TA L I N F R A S T R U C T U R E , A N D H O w D O E S I T G E T B U I LT ?

language HTML and stylesheet formatting language CSS, two basic

components of any web page. The W3C’s membership is slightly

more formalized, requiring an application and fee, and its members

range from businesses to universities to individuals.

The IETF and W3C help manage standards around the most funda-

mental pieces of the Internet, but the next layer up—choices about

which languages are used to build software, which frameworks to

build them with, or which libraries to include—are entirely self-man-

aged in the public domain. (Certainly, many proprietary software

projects, particularly those with heavy regulation, such as aeronau-

tics or health care, may have requirements on which tools are used.

They may even build proprietary tools for their own use.)

With physical infrastructure, if the government builds a new bridge

between San Francisco and Oakland, that bridge will certainly be

used. Similarly, when the W3C wants to set a new standard, such as

a new version of HTML, it is formally published and announced. For

example, in 2014, the W3C announced HTML5, the first major

revision of HTML since 1997, which had been in development for

seven years.

By contrast, when a computer scientist wants to create a new pro-

gramming language, he or she is free to publish it and it may or may

not be adopted. The bar for adoption is even lower for frameworks

or libraries: because they are easier to build, and easier for a user to

learn and implement, these tools are iterated more frequently.

More importantly, nobody is forcing or even strongly encouraging

anyone to use these projects. Some projects remain more academic

than practical; others are ignored completely. It is difficult to predict

4 5

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H AT I S D I G I TA L I N F R A S T R U C T U R E , A N D H O w D O E S I T G E T B U I LT ?

what gets used until others are actually using it.

Developers like to point to usefulness as an indicator of whether a

new project gets adopted or not. New projects should make an

improvement to an existing project, or solve a chronic problem, in

order to be deemed useful and worthy of adoption. When developers

are asked why their project got so popular, many of them will shrug

and simply say, “It was the best thing out there.”

Not unlike technology startups, new digital infrastructure projects

rely upon network effects for adoption. Getting a core group of devel-

opers excited, or a software company using the project, helps spread

the word. A catchy name, branding, or website can add to the proj-

ect’s novelty factor. A developer’s reputation within their respective

community also helps determine whether a new project

gets noticed.

However, in the end, a new digital infrastructure project can come

from just about anywhere, which means each project is managed

and sustained in very different ways.

4 6

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w A R E D I G I TA L I N F R A S T R U C T U R E p R O j E C T S m A N A G E D A N D S U p p O R T E D ?

How are digital infrastructure projects
managed and supported?

We’ve established that digital infrastructure is as critical to modern

society as physical infrastructure. Although digital infrastructure is

not subject to the high costs and political obstacles of physical

infrastructure, its decentralized nature also makes it harder to pin

down. Without a central governing body, how do open source

projects find the support they need?

In short, the answer is different for every project. However, there are

several places where projects might originate: within a company, as

a new business, or from an individual or community of developers.

Within a company
Sometimes, the project starts within a company. Here are a few

examples that demonstrate the different ways in which an open

source project might be supported by a company’s resources:

Go, the new programming language previously mentioned, was developed
at Google in 2007 by engineers Robert Griesemer, Rob Pike, and Ken
Thompson, who created Go as an experiment. Go is open source and
accepts contributions from the broader community. However, its core
maintainers are employed full-time by Google to work on the language.46

React is a new JavaScript library that is growing in popularity. React was
created by Jordan Walke, a software engineer at Facebook, for internal
use on Facebook’s news feed. An employee at Instagram (which is
owned by Facebook) wanted to use React, too, and eventually React was
open sourced, two years after its initial development.47 Facebook

46

https://en.wikipedia.org/
wiki/Go_(programming_lan-
guage)

47

https://www.quora.com/
How-was-the-idea-to-devel-
op-React-conceived-and-
how-many-people-worked-
on-developing-it-and-im-
plementing-it-at-Facebook/
answer/Bill-Fisher-17

4 7

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w N O T C H A R G I N G F O R S O F T wA R E T R A N S F O R m E D S O C I E T y

dedicated a team of engineers to help maintain the project, but React
also accepts contributions from the public developer community.48

Swift, the programming language used for iOS, OS X, and other Apple
projects, is an example of a project that was only recently open sourced.
Swift was developed internally by Apple for four years and released as a
proprietary language in 2014. Developers could use Swift to write soft-
ware for Apple devices, but not contribute to the language’s core develop-
ment. In 2015, Swift was open sourced under the Apache License 2.0.49

The incentives for a company to maintain an open source project are

numerous. Opening up a project to the public can mean less work

for the company, which is essentially crowdsourcing improvements.

It builds goodwill and awareness among developers, who might then

be incentivized to use other company resources to build things.

Having an active community of developers creates a recruiting

pipeline for talent. And sometimes, open sourcing a project helps a

company strengthen their user base and brand, or even drown out

competition. The more market share a company can capture, even

through tools it gives away, the more influential it becomes. This is

not dissimilar to the “loss leader” concept of business.

Even if a project is created internally, if it is open sourced, that

project is free to use or modify according to the terms of an open

source license, and is not considered company intellectual property

in the traditional sense. Many company projects use standard open

source licenses that are considered acceptable by the broader devel-

oper community, such as Apache License 2.0 or BSD. However, in

some cases, companies add their own clauses. React, for example,

has an additional clause that could potentially cause patent claim

conflicts with React users.50 As a result, some companies and

48

https://en.wikipedia.org/wiki/
React_(JavaScript_library)

49

 https://en.wikipedia.org/
wiki/Swift_(programming_
language)

50

 https://github.com/face-
book/react/blob/master/
PATENTS

4 8

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w N O T C H A R G I N G F O R S O F T wA R E T R A N S F O R m E D S O C I E T y

individuals are reluctant to use React, and the decision is frequently

portrayed as in conflict with open source principles.

As a new business
Some infrastructure projects take a traditional startup path, includ-

ing venture funding. A couple of examples are as follows:

Docker, perhaps the best-known contemporary example, helps software
applications run inside containers. (Containers provide a clean, tidy
environment for software applications that make them easier to run
anywhere). Docker started as an internal project within dotCloud, a
platform-as-a-service company, but became so popular that the founders
decided to make Docker the main focus of the company. The Docker
project was open sourced in 2013. Docker has raised $180M with an
estimated valuation of over $1B.51 Their business model is based on
support, private plans, and services. Docker’s 2014 revenue was less than
$10 million.52

Npm is a package manager to help Node.js developers share and
manage their projects, released in 2010. Npm raised nearly $11M in
funding since 2014 from True Ventures and Bessemer Ventures, among
others. Their business model focuses on paid features that support
privacy and security.

Meteor is a JavaScript framework that was first released in 2012. It was
incubated by Y Combinator, a prestigious startup accelerator that also
incubated companies like AirBnB and Dropbox. Meteor has received over
$30M in funding to date from firms including Andreessen Horowitz and
Matrix Partners.53 Meteor’s business model focuses on an enterprise
platform called Galaxy, released in October 2015, for operating and
managing Meteor applications.54

51

http://venturebeat.
com/2015/06/13/docker-
now-valued-at-1b-paid-some-
one-799-for-its-logo-on-
99designs/

52

http://www.bloomberg.com/
news/articles/2015-04-14/
docker-said-to-join-1-billion-
valuation-club-with-new-
funding

53

https://www.crunchbase.
com/organization/meteor

54

http://info.meteor.com/blog/
announcing-meteor-galaxy

4 9

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w N O T C H A R G I N G F O R S O F T wA R E T R A N S F O R m E D S O C I E T y

The venture funding approach is relatively new, and growing rapidly.

Lightspeed Venture Partners found that from 2010-2015, venture

firms invested over $4B in open source companies, a tenfold increase

over the five previous years.55

Using venture capital to support open source projects has been met

with skepticism from developers (and even some venture capitalists

themselves), due to lack of clear business models and questionable

revenue to justify valuations. Steve Klabnik, a maintainer for the

language Rust, explains venture capital’s sudden interest in funding

open source:

“I’m a VC. I need a large number of companies to exist to make

my money….I need costs to be low and profits to be high. I need

a healthy open source ecosystem to make this happen. So what

do I do?...VCs are realizing this story, and are starting to invest

in infrastructure. [...]

In many ways, the open source stuff is a loss leader, so that you

get hooked...and then use it for everything, even your closed

source code. This is a great business strategy, but it also places

GitHub at the center of this new universe. So for similar

reasons, a16z needs GitHub to be awesome to bootstrap every

open source ecosystem that will exist into the future….And a16z

has the money to ‘throw away’ on something they won’t get a

direct return out of, because they’re smart enough to invest

some of their fund in ecosystem development.56

GitHub, created in 2008, is a platform for code, available publicly or

privately in an easy-to-read environment. It hosts many popular

open source projects and, most importantly, has become the cultural

55

http://venturebeat.
com/2015/12/06/its-actually-
open-source-software-thats-
eating-the-world/

56

http://words.steveklabnik.
com/is-npm-worth-26mm

5 0

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w N O T C H A R G I N G F O R S O F T wA R E T R A N S F O R m E D S O C I E T y

epicenter for open source’s explosive growth (to be discussed later

in this report).

GitHub did not take any venture capital until 2012, four years after

its founding. Before then, GitHub was a profitable company. Since

2012, GitHub has taken $350M in total venture capital funding.57

Andreessen Horowitz (or “a16z”), the $4B venture capital firm who

provided most of the capital in their first $100M round, stated it was

the largest investment they had ever made at the time.58

Steve Klabnik’s thesis, in other words, is that venture capital firms

who invest in open source infrastructure promote these platforms as

a “loss leader,” even when there is no direct business model or

profitability to be had, because it grows the entire ecosystem. The

more resources GitHub has, the more open source thrives. The more

open source thrives, the more startups thrive. If nothing else,

venture capital’s interest in open source, especially given the lack of

clear financial return, validates the critical role open source plays in

the broader startup ecosystem.

(As an aside, it is important to mention that GitHub, the platform

itself, is not an open source project, and therefore is not an example

of venture capital directly funding open source. GitHub is a closed

source platform that hosts open source projects. This is a controver-

sial topic for some open source contributors.)

By individuals or a group of individuals
Finally, many digital infrastructure projects are developed and

maintained entirely by independent developers, or a community of

developers. A few examples are as follows:

57

https://www.crunchbase.
com/organization/github

58

http://www.wsj.com/articles/
SB1000142405270230329220
4577517111643094308

5 1

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w N O T C H A R G I N G F O R S O F T wA R E T R A N S F O R m E D S O C I E T y

Python, a programming language, was developed and published by
computer scientist Guido van Rossum in 1991. Van Rossum claimed he

“was looking for a ‘hobby’ programming project that would keep me
occupied during the week around Christmas.” 59 The project took off, and
Python is now considered to be one of the most popular programming
languages today. 60 Van Rossum remains the principal author of Python
(also known as a benevolent dictator for life, or BDFL, among develop-
ers) and is currently employed by Dropbox, whose software relies heavily
on Python. 61 Python is partially managed by the Python Software
Foundation, created in 2001, which has a number of corporate sponsors,
including Intel, HP, and Google.

RubyGems is a package manager that helps distribute programs and
libraries associated with the Ruby programming language. It is a critical
piece of infrastructure for any Ruby developer. Examples of websites that
use Ruby are Hulu, AirBnB and Bloomberg. 62 RubyGems was created in
2003 and is managed by a community of developers. Some development
work is supported by Ruby Together, a foundation that accepts donations
from companies and individuals.

Twisted, a Python library, was authored by a developer named Glyph
Lefkowitz in 2002. Since then, it has achieved widespread usage among
individuals and organizations, including Lucasfilm and NASA.63 Twisted
continues to be run by a group of volunteers. It is supported by corporate
and individual donations; Lefkowitz remains the lead architect and
offers consulting services for income.64

As these examples demonstrate, open source projects can come

from just about anywhere. This is, generally, considered to be a good

thing. It means that useful projects are more likely to succeed,

avoiding both the vacuous hype associated with startups, and the

bureaucracy associated with government. Digital infrastructure’s

decentralized nature also reinforces the open and democratic

59

https://www.python.org/doc/
essays/foreword/

60

http://blog.codeeval.
com/codeevalblog/2015#.
VjvKZhNViko=

63

https://twistedmatrix.com/
trac/wiki/SuccessStories

61

https://en.wikipedia.org/wiki/
Guido_van_Rossum

64

https://twistedmatrix.com/
glyph/

62

http://skillcrush.
com/2015/02/02/37-rails-
sites/

5 2

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

H O w N O T C H A R G I N G F O R S O F T wA R E T R A N S F O R m E D S O C I E T y

principles of the Internet, where anybody could theoretically create

the next big project, whether a company or individual.

On the other hand, many useful projects will come from indepen-

dent developers who suddenly find themselves at the helm of a

successful project, facing critical decisions about its future. A 2015

study by the Federal University of Minas Gerais in Brazil looked at

133 of the most actively used projects hosted on GitHub, across

programming languages, and found that 64%, or nearly two-thirds,

relied upon just one or two developers to survive.65 Although there

may be a long tail of casual or infrequent contributors, for many

projects, the major responsibilities of project management fall on

just a few people.

Coordinating international communities of opinionated contributors

and managing the expectations of Fortune 500 companies who use

your project are challenging tasks for anyone. It is truly impressive

how much has already been accomplished in this manner. These

tasks are especially difficult when developers lack clear role models

or institutional support for this work. In interviews for this report,

many developers privately lamented that they have no idea who to

ask for help and would “rather just code.”

Why do they keep doing it? The remainder of this paper will focus on

how and why open source contributors maintain projects of massive

scale and impact, and why it matters to all of us.

65

https://peerj.com/pre-
prints/1233.pdf

5 3

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

wH y D O pEOpLE k E E p CON T R I BU T I N G TO T H ESE pROjEC TS , wH E N T H E y ’R E N OT GE T T I N G pA I D FOR I T ?

Why do people keep contributing to
these projects, when they’re not
getting paid for it?

Many digital infrastructure projects are maintained by individual

contributors or a community of contributors. In most cases, these

contributors are not being paid directly to work on the project.

Instead, they contribute for reasons that are unique to open source

communities, including building reputation and a public service

mindset. This section will explore some of those motivations in

greater detail.

Contributing to open source builds
one’s reputation.

Building one’s reputation is perhaps the most practical reason why

someone would want to contribute to an open source project. For

developers, technical writers, or others, these projects help them

prove themselves in public, giving them a chance to be part of

something big and useful.

Google runs a program called Google Summer of Code, which

provides a summer stipend to student developers to contribute to

popular open source projects. The program works well because the

developers are students, new to the field of computer science, and

eager to show off their skills.

Developers, in particular, leverage open source contributions to

build a portfolio of their work. In addition, by providing input on

popular projects with active communities, a developer has a chance

5 4

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

wH y D O pEOpLE k E E p CON T R I BU T I N G TO T H ESE pROjEC TS , wH E N T H E y ’R E N OT GE T T I N G pA I D FOR I T ?

to build his or her reputation by making him or herself “known.”

GitHub, the website previously mentioned, is a popular platform for

collaborating on code. When a developer makes a contribution to a

public software project, those contributions appear in his or her

profile. A developer’s GitHub profile can serve as a portfolio for

software companies, but only contributions to public (i.e., open

source) projects are visible to anyone.

However, reputation-based motivations also come with risks, espe-

cially among junior developers. A developer early in his or her career

may contribute to an open source project for the sole purpose of

getting hired, then stop contributing once this goal has been

achieved. In addition, developers who are solely interested in

building their portfolio may make lower quality contributions to the

project that do not get accepted or even slow down the develop-

ment process. Finally, if the purpose of making a public contribution

is to build one’s reputation, a developer will be motivated to only

contribute to popular or attractive projects (an extension of the

“magpie developer” phenomenon mentioned earlier), which means

that older projects struggle to find new contributors.

The project became unexpectedly popular,
and the maintainer feels obligated to
support it.

A popular open source project can create dependencies for other

companies, individuals or organizations. In other words, the code is

being used in live software, written and deployed by other people,

that could serve any number of purposes, whether online shopping

or health care. This complex set of dependencies (many of which are

not visible even to the project author, since they do not have clear

5 5

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

wH y D O pEOpLE k E E p CON T R I BU T I N G TO T H ESE pROjEC TS , wH E N T H E y ’R E N OT GE T T I N G pA I D FOR I T ?

user data) can make a maintainer feel ethically obligated to continue

supporting it.

Arash Payan, the developer of Appirater mentioned in the beginning

of this paper, released his project in 2009. Of his decision to

continue maintaining the project, Payan says:

“It's not terribly exciting stuff, but there are so many people out

there that use (depend, even?) on the project for their apps, that

I feel obligated to be a good steward of it. Personally, I've

moved on from iOS, so maintaining an iOS library isn't exactly

my first choice for a side project.66

Payan estimates the project only takes roughly 1-2 hours per month

to keep up-to-date, so he doesn’t mind the work.

Some projects become unexpectedly popular but take more time to

support. Andrey Petrov is an independent developer who wrote a

Python library called urllib3. He released it in 2008 as a significant

improvement to the existing standard library, and it became popular

among Python developers. Today, every Python user depends on it.67

Andrey made the project open source in hopes that other people

would help support its continued development and upkeep. Andrey

is a freelance developer—although he enjoys maintaining urllib3, he

can only justify doing so in his free time, since he is not paid for his

work. Cory Benfield, who is employed by Hewlett Packard Enterprise

to help maintain critical Python libraries (which HPE uses and

depends on), now works on urllib3 as part of his job. Cory’s arrange-

ment has reduced some of the burden.

67

https://medium.com/@
shazow/urllib3-stripe-and-
open-source-grants-edb-
9c0e46e82

66

Email interview with Arash
Payan

5 6

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

wH y D O pEOpLE k E E p CON T R I BU T I N G TO T H ESE pROjEC TS , wH E N T H E y ’R E N OT GE T T I N G pA I D FOR I T ?

The project is a labor of love.
Eric Holscher is a creator of Read the Docs, which hosts software

documentation. Documentation is the equivalent of an instruction

manual. Just as one might need an instruction manual to figure out

how to put a piece of furniture together, developers need documen-

tation to figure out how to implement a project. Without proper

documentation, it would be difficult for a developer to know how to

get started.

Read the Docs provides documentation for 18,000 software projects,

including enterprise customers, and serves over 15 million page

views per month.68 Although they make some money from large

business clients, Read the Docs is still mostly funded by donations

from its users. A company called Rackspace sponsors their

server costs.

Eric and his cofounder, Anthony Johnson, maintain the project, and

do not see steady income from it, despite working on the project

full-time. A $48,000 one-time grant from the Mozilla Foundation in

December 2015 will help cover their work for a short time.69 They

are currently experimenting with an advertising model (that does

not involve tracking their users) to reach sustainability.70

Eric notes that the difficulties lie not just in new development work,

but non-coding functions like customer support, for which one of

the maintainers must be on call every weekend in case of an emer-

gency. When Eric explained why he continues to support the project,

he called it a “labor of love”:

68

https://readthedocs.org/
sustainability/

69

https://blog.mozilla.org/
blog/2015/12/10/mozilla-
open-source-support-first-
awards-made/

70

http://blog.readthedocs.com/
ads-on-read-the-docs/

5 7

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

wH y D O pEOpLE k E E p CON T R I BU T I N G TO T H ESE pROjEC TS , wH E N T H E y ’R E N OT GE T T I N G pA I D FOR I T ?

“Either humans are irrational or they don’t just follow money.

Clearly there’s another motivation for me here. It’s a labor of

love. I could close this project tomorrow and be done with it if I

wanted to, but I’ve been doing it for 5 years and I don’t want to

see that happen.71

Eric is motivated to work on Read the Docs because he sees the

tangible value it creates for others. For many project maintainers,

impact is a primary motivator, because they see how their direct

efforts positively affect other people’s lives. In this sense, open

source work shares many similarities to the nonprofit sector. Much

like the nonprofit sector, however, this “labor of love” mentality can

make it harder for open source communities to discuss the elephant

in the room: how to sustain projects that require more resources and

attention than current contributors can offer.

71

Skype interview with
Eric Holscher

Challenges Facing
Digital Infrastructure

"Open source has been such an incredible

force for quality and community exactly

because it's not been defined in market terms.

In market terms, most open source projects

should never have had a chance."

 – David Heinemeier Hansson, Ruby on Rails

5 9

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

O p E N S O U R C E ’ S C O m p L I C AT E D R E L AT I O N S H I p w I T H m O N E y

Open source’s complicated
relationship with money

Money has been a taboo topic for open source projects since the

early days of the free software movement, which arose in direct

response to the practice of commercial, proprietary software.

In the context of the free software movement, the aversion to

money is certainly understandable. Money is what commercialized

software in the 1980s, and it took decades to reverse this mentality

and promote the benefits of building software that is free to use,

distribute, and modify. Although we take free software for granted

today, in the 1980s it was truly a counterculture and revolution-

ary mindset.

Yet even within open source communities, there is a pervasive belief

that money has a corrupting influence on open source. It is indeed

remarkable how much has been created entirely through labors of

love. These days, software development is considered a lucrative

field, with coding schools luring prospective students with the

promise of making a six-figure entry-level salary. By contrast, there

is something pure and admirable about creating a software project

simply for the joy of it.

On a more practical level, open source projects traditionally arise

from a real and identifiable need. Someone decides that a project

could be done better, so they fork the project, make improvements,

then release it for consumption. Pragmatism is core to open source’s

culture, as evidenced by its strategic break from the free software

movement in the late 1990s. Some open source contributors fear,

6 0

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

O p E N S O U R C E ’ S C O m p L I C AT E D R E L AT I O N S H I p w I T H m O N E y

perhaps justifiably, that money will introduce bloat into the system,

with developers creating new projects simply to get funding, rather

than because the solution is needed.

David Heinemeier Hansson (also known as DHH), who created the

popular software framework Ruby on Rails, warned in 2013 against

mixing open source with money:

“Open source has been such an incredible force for quality and

community exactly because it's not been defined in market

terms. In market terms, most open source projects should never

have had a chance.

Take Ruby on Rails. [...] That's a monumental achievement of

humanity! Thousands, collaborating for a decade, to produce

an astoundingly accomplished framework and ecosystem

available to anyone at the cost of zero. Take a second to ponder

the magnitude of that success. Not just for Rails, of course, but

for many other, and larger, open source projects out there with

an even longer lineage and success.

It's against this fantastic success of social norms that we should

be extraordinary [sic] careful before we let market norms

corrupt the ecosystem.72

Structurally, open source’s greatest advantage —its penchant for

democracy— is also its weakness. Many open source projects are

nothing more than a public code repository to which a group of

people contribute regularly: the equivalent of an unofficial social

club on a college campus. There is no legal structure and there are

no clear owners or leaders. “Maintainers,” or the primary

72

http://david.heinemeierhans-
son.com/2013/the-perils-of-
mixing-open-source-and-
money.html

6 1

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

O p E N S O U R C E ’ S C O m p L I C AT E D R E L AT I O N S H I p w I T H m O N E y

contributors, often emerge de facto, based on who authored the

project or put in significant time or effort. Even then, however, some

projects are reluctant to introduce hierarchy by clearly favoring one

contributor over another.

In April of 2008, Jeff Atwood, an aforementioned prominent .NET

developer, announced he was donating $5,000 towards an open

source project, ScrewTurn Wiki. ScrewTurn Wiki is a wiki project

developed by Dario Solara, another .NET developer, and maintained

by volunteers. Atwood told Dario that the grant would be “no strings

attached;” Solara could use the money as he saw fit towards

the project.

Several months later, Atwood followed up with Solara to ask how he

decided to spend the donation. Solara replied that the grant money

was “still untouched. It’s not easy to use it….What would you suggest?”

Atwood wrote that he was “crushingly disappointed” by the

response.73 The decentralized nature of open source has made it

what it is: crowdsourced software that anyone can build, share and

contribute to. But when it comes to discussing organizational needs

or sustainability, it can be difficult to make authoritative decisions.

These transitions to long-term sustainability can be drawn out and

painful. One of the more prominent examples is the Linux kernel, an

open source project used in many operating systems worldwide,

including Android and Chrome OS. It was created in 1991 by

computer science student Linus Torvalds.

As the Linux kernel grew in popularity, Linus was reluctant to

discuss how to scale development of the project, preferring to

manage everything himself. Project maintainers grew restless and

73

http://blog.codinghorror.
com/is-money-useless-to-
open-source-projects/

6 2

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

O p E N S O U R C E ’ S C O m p L I C AT E D R E L AT I O N S H I p w I T H m O N E y

even angry at Torvalds, sparking “really big fights,” according to

Torvalds. The disputes peaked in 2002 with discussions of a poten-

tial schism.

Torvalds attributed the internal conflict to a lack of organization,

rather than to any technical issues:

“We had really big fights back in 2002 or so where I was drop-

ping patches left and right, and things really weren't working.

It was very painful for everybody, and very much for me, too.

Nobody really likes criticism, and there was a lot of flaming

going around—and because it wasn't a strictly technical

problem, you couldn't point to a patch and say, ‘hey, look, that

patch improves timings by 15%’ or anything like that: there was

no technical solution. The solution ended up being better tools,

and a work flow [sic] that allowed much more distributed

management.74

The Linux Foundation was created in 2007 to help protect and

maintain Linux and its associated projects. Torvalds does not run the

Linux Foundation himself, preferring instead to receive a steady

salary as a “Linux Fellow” and work on his projects as an engineer.

While open source software is admirably rooted in a culture of

volunteerism and collaboration relatively untouched by extrinsic

motives, the reality is that our economy and society, from multimil-

lion dollar companies to government websites, depends on

open source.

Overall, this is probably a positive development for society. It means

that software is no longer strictly relegated to private, proprietary

74

http://www.datamation.
com/open-source/linus-tor-
valds-and-others-on-commu-
nity-burnout-1.html

6 3

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

O p E N S O U R C E ’ S C O m p L I C AT E D R E L AT I O N S H I p w I T H m O N E y

development, as it had been for decades. The fact that the United

States government, or a social network website with billions of

users, incorporates community-built software, paints an optimistic

future for democracy.

In addition, many projects function well on a community basis if

they are on the extremes of size: that is, either small projects that

do not require significant maintenance (as in the example of Arash

Payan and Appirater), or very large projects that have found signifi-

cant corporate support (as in the example of Linux).

However, many projects are trapped somewhere in the middle: large

enough to require significant maintenance, but not quite so large

that corporations are clamoring to offer support. These are the

stories that go unnoticed and untold. From both sides, these main-

tainers are told they are the problem: Small project maintainers

think mid-sized maintainers should just learn to cope, and large

project maintainers think if the project were “good enough,” institu-

tional support would have already come to them.

There are also political concerns around financial support that make

it harder to find a reliable source of funding. A single company may

not want to sponsor development work that also benefits their

competitor, who paid nothing. A private benefactor may want special

privileges that threaten the neutrality of a project. (For example, for

security-related projects, privileged disclosure of vulnerabilities—

paying for special knowledge about security vulnerabilities instead

of exposing those vulnerabilities to the public—is a controversial

request.) And governments may have political reasons to sponsor

the development of a particular project, or ask for special favors

6 4

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

O p E N S O U R C E ’ S C O m p L I C AT E D R E L AT I O N S H I p w I T H m O N E y

such as “backdoors” (a secret way of bypassing security authentica-

tion), even if that project is used internationally.

The recent legal disputes between the FBI and Apple help under-

score the tension between technology and government, even

beyond open source projects. The FBI has repeatedly, through court

orders, requested Apple’s assistance in unlocking iPhones to help

resolve criminal investigations. Apple has repeatedly denied these

requests. In February 2016, the FBI requested Apple’s assistance in

unlocking the iPhone belonging to one of the shooters in a recent

terrorist attack in San Bernardino, California. Apple again denied the

request, posting a public customer letter on its website, which

stated that:

“While we believe the FBI’s intentions are good, it would be

wrong for the government to force us to build a backdoor into

our products. And ultimately, we fear that this demand would

undermine the very freedoms and liberty our government is

meant to protect.75

In March 2016, the FBI found a third party to help it unlock the

iPhone and dropped the legal case.

One of open source’s greatest strengths is that the code is consid-

ered a public good, and many projects take governance seriously. It

is personally important to many project maintainers that no individ-

ual party control something that the public uses and benefits from.

However, this commitment to neutrality can come at a price, when

many resources available to software developers today (such as

venture capital or corporate donations) are based on expectations of

75

http://www.apple.com/
customer-letter/

6 5

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

O p E N S O U R C E ’ S C O m p L I C AT E D R E L AT I O N S H I p w I T H m O N E y

influence or financial return.

Open source software is being created and used at a rate never seen

before. Many open source projects are experiencing a difficult transi-

tion from selfless creative pursuit to critical public infrastructure.

These increasing dependencies mean we have a shared responsibility

to ensure that these projects find the support they need.

6 6

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H y D I G I TA L I N F R A S T R U C T U R E S U p p O R T p R O B L E m S A R E A C C E L E R AT I N G

Why digital infrastructure support
problems are accelerating

Open source is quickly becoming a standard for digital infrastructure

projects, and in software development overall, due to the benefits

cited earlier in this paper. Black Duck, a company that helps clients

manage open source software, runs an annual survey that asks

companies about their open source use. (This survey is one of the

few open source data projects in existence.) According to their 2015

survey, 78% of the 1,300 companies surveyed said their software

created for customers was built on open source, nearly double

that of 2010.76

Open source has seen massive growth in popularity in the last five

years, not just because of the obvious benefits to developer and

consumer, but also due to new tools that make it easier to collabo-

rate on software. In order to understand why digital infrastructure

faces growing support problems, we must understand how open

source software development is proliferating.

GitHub as a standardized place to
collaborate on code

The role of GitHub in bringing open source to a mainstream audience

cannot be overemphasized. Although open source has existed for

over thirty years, until 2008, contributing to an open source project

was not so easy. A developer would have to figure out who the

maintainer was, find a way to contact them, and propose changes

using whichever format that project maintainer preferred (for

example, a mailing list or message board). GitHub standardized

76

https://www.blackducksoft-
ware.com/future-of-open-
source

6 7

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H y D I G I TA L I N F R A S T R U C T U R E S U p p O R T p R O B L E m S A R E A C C E L E R AT I N G

these methods of communication: maintainers are transparently

listed on a project’s page, and discussion of proposed changes takes

place on the GitHub platform.

GitHub created vocabulary that is now standard among open source

contributors, such as the “pull request” (where a developer submits

changes to a project for review) and repurposing the term “fork”

(historically, creating a copy of a project and modifying it into a new

project). Prior to GitHub, forking a project meant there were irrecon-

cilable differences over the direction a project should take. Forking

was considered a serious move: if a group of developers forked a

project, it meant the project was splitting into ideological factions.

Forking was also used to develop a new project that might have a

markedly different purpose from the original project.

This type of “project fork” still exists today, but GitHub decided to

use the term “fork” to encourage more activity on their platform. A

GitHub fork, unlike a project fork, means temporarily copying a

project, making changes, and usually merging it back into the

project. Forking as an everyday practice on GitHub’s platform has

added a positive, lightweight connotation to the term: a sign of

taking one person’s idea and making it better.

GitHub also helped standardize the use of a version control system

called Git. Version control systems keep track of everybody’s work

on a particular piece of code. For example, if Developer 1 and

Developer 2 are fixing different parts of the same code at the same

time, logging each change in a version control system ensures their

changes don’t conflict with one another.

There are several options for version control systems, including

6 8

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H y D I G I TA L I N F R A S T R U C T U R E S U p p O R T p R O B L E m S A R E A C C E L E R AT I N G

Apache Subversion and Concurrent Versions System (CVS). Git used

to be a fairly unknown version control system. In 2010, Subversion

was used in 60% of software projects, whereas Git was used in

just 11%.77

Linus Torvalds, the developer behind Linux, designed Git in 2005 as

a better and faster way to manage multiple contributions from many

people. Git was markedly different from earlier version control

systems and therefore not so easy to pick up, but its decentralized

workflow solved a real problem for developers.

GitHub provided an intuitive user interface for open source projects

that used Git, thus making it easier for developers to learn. The

more developers used GitHub, the more they wanted to keep using

Git. Today, in 2016, Git is used in 38% of software projects, while

Subversion’s share has dropped to 47%.78 Although Subversion is still

the most popular version control system today, its use is declining.

79

77

http://redmonk.com/so-
grady/2013/12/19/dvcs-and-
git-2013/#ixzz2qyfVpSR9

78

As of January 6, 2016. https://
www.openhub.net/reposito-
ries/compare

79

Job postings requiring
knowledge of Git vs.
Subversion, via Indeed.com.
Data accessed June 7, 2016.
http://www.indeed.com/
jobtrends

6 9

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H y D I G I TA L I N F R A S T R U C T U R E S U p p O R T p R O B L E m S A R E A C C E L E R AT I N G

The widespread adoption of Git makes it much easier for a developer

to join any open source project on GitHub, because the method of

making changes, and communicating those changes, is the same

across projects. Learning how to contribute to one project gives

someone the ability to contribute to hundreds of others. This was

not the case before GitHub, where different version control systems

were used for different projects.

Finally, GitHub provided a place for developers to talk to each other

in a public setting for social reasons, not just code collaboration.

GitHub has become a de facto community of sorts for developers,

who use it to communicate with each other and show off their work.

Developers now have an opportunity to demonstrate their leader-

ship and portfolio of work in a way they could not before.

GitHub’s usage reflects its meteoric rise. In 2011, there were only 2

million repositories.80 Today, GitHub has 14 million users and over 35

million repositories.81 (Note that this includes forked repositories;

the unique repository count is probably closer to 17 million.) GitHub’s

Brian Doll noted that the first million repositories took nearly 4 years

to create; getting from nine to ten million took just 48 days.82

By contrast, SourceForge, the most popular platform for hosting

open source code before GitHub, had 150,000 projects in 2008. An

estimated 18,000 of those projects were active.83

80

https://github.com/blog/841-
those-are-some-big-numbers

81

https://en.wikipedia.org/wiki/
GitHub

82

https://github.com/
blog/1724-10-million-repos-
itories

83

http://dirkriehle.com/pub-
lications/2008-2/the-total-
growth-of-open-source/

7 0

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H y D I G I TA L I N F R A S T R U C T U R E S U p p O R T p R O B L E m S A R E A C C E L E R AT I N G

Stack Overflow as a standardized place to get
help with code

Another important tool is Stack Overflow, a popular Q&A website for

programmers, also created in 2008 by Jeff Atwood, the aforemen-

tioned programmer and blogger, and Joel Spolsky. As of April 2014,

Stack Overflow had over 4 million registered users and over 11

million questions answered (note that one does not need to be

registered to view questions or their answers).84 Stack Overflow has

become a de facto support platform for developers to ask questions

about coding, find answers to specific code problems, or just get

advice on the best way to build a certain piece of software. It can be

thought of as crowdsourced “customer support” for developers

around the world. While Stack Overflow is not a place to write live

code, it is a critical collaboration tool for the individual developer,

making it easier to solve problems and code more efficiently. This

means any one individual developer is capable of achieving more in

a shorter period of time, increasing overall output. Stack Overflow

has also helped people learn new coding concepts (or even get

started with coding itself), making coding easier and more acces-

sible to all.

Macro trends in a rapidly changing landscape
The outsized popularity of open source has led to significant

changes in how today’s developer talks, thinks about, and collabo-

rates on software.

Firstly, licensing expectations and requirements have changed to

reflect a world that embraces open source as the standard, not the

exception: a triumph over the proprietary world of the 1980s. Both

GitHub and Stack Overflow’s policies reflect this.

84

https://en.wikipedia.org/wiki/
Stack_Overflow

7 1

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H y D I G I TA L I N F R A S T R U C T U R E S U p p O R T p R O B L E m S A R E A C C E L E R AT I N G

From the beginning, Stack Overflow used a Creative Commons

license called CC-BY-SA for all content posted to the website. This

license was limiting, however, because it required that users provide

attribution when using others’ code, as well as distribute contribu-

tions under the same license.85 While many ignored or were not

aware of this license, it made it difficult for developers under stricter

constraints (such as in a corporate environment) to use Stack

Overflow. If they posted a question asking for help with their code,

and a stranger fixed it, legally, they would have had to attribute the

code to that person.

As a result, Stack Overflow announced an intent to move all new

code contributions to the MIT License, which is an open source

license with fewer restrictions.86 As of April 2016, they are still

actively discussing and soliciting feedback from the community on

the best way to implement more permissiveness.87 This move is a

nod to both Stack Overflow’s popularity and the proliferation of

open source at large. That a developer working at a big software

company could legally include a complete stranger’s code in a

product they charge for is an accomplishment for open

source, indeed.

GitHub, by contrast, initially avoided providing default licensing for

projects posted to its platform, perhaps fearing it would slow user

adoption and growth.88 Projects posted to GitHub, then, grant the

right to view and fork the project, but are otherwise protected under

copyright, unless the developer specifies an open source license.

In 2013, facing public concerns, GitHub finally decided to take a

stronger stance on licensing, including the creation and promotion

of a microsite, choosealicense.com, to help users pick a license for

85

https://creativecommons.
org/licenses/by-sa/2.0/

86

http://meta.stackexchange.
com/questions/271080/the-
mit-license-clarity-on-using-
code-on-stack-overflow-and-
stack-exchange

87

http://meta.stackexchange.
com/questions/272956/a-
new-code-license-the-mit-
this-time-with-attribution-
required

88

http://www.infoworld.com/
article/2615869/open-
source-software/github-
needs-to-take-open-source-
seriously.html

7 2

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H y D I G I TA L I N F R A S T R U C T U R E S U p p O R T p R O B L E m S A R E A C C E L E R AT I N G

their project. They also now encourage their users to choose a

license from a list of options when creating a new repository.89

What’s interesting, however, is that many developers were either not

aware that their “open source” projects were not legally protected,

or didn’t care. An informal 2013 study by the Software Freedom Law

Center of 1.6 million GitHub repositories revealed that only 15% had

specified a license.90 Conversations with developers for this report

suggested that many didn’t care to put up a license, or figured that if

someone asked, they could just add one later.

This lack of interest in licensing led James Governor, cofounder of

developer analyst firm Red Monk, to observe in 2012 that “younger

devs today are about POSS - Post open source software. Fuck the license

and governance, just commit to Github”.91 In other words, defaulting to

open information is so culturally obvious today that developers don’t

see themselves as doing something differently anymore, the way the

political free software rebels did in the 1980s. This shift in values,

while inspiring on a macro level, could lead to legal complications

for individuals as their projects grow in popularity or are used for

commercial purposes.

But by making it so easy and standardized to collaborate on code

together, open source is also grappling with a perverse set of

externalities.

Open source made coding easier and more accessible to the world.

This increased accessibility, in turn, has created a new class of devel-

opers who are less experienced, but who know how to utilize others’

prefabricated components to build what they need.

89

http://www.infoworld.com/
article/2611422/open-source-
software/github-final-
ly-takes-open-source-licens-
es-seriously.html

90

http://www.theregister.
co.uk/2013/04/18/github_li-
censing_study/

91

https://twitter.com/
monkchips/sta-
tus/247584170967175169

7 3

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H y D I G I TA L I N F R A S T R U C T U R E S U p p O R T p R O B L E m S A R E A C C E L E R AT I N G

In 2012, Jeff Atwood, the cofounder of Stack Overflow, wrote a

tongue-in-cheek blog post called “Please Don’t Learn How to Code”,

lamenting the trendiness of coding bootcamps and schools. While

Atwood commended the desire of nontechnical people to under-

stand code on a conceptual level, he warned against assuming that

“adding naive, novice, not-even-sure-they-like-this-whole-programming-

thing coders to the workforce is a net positive for the world.” 92

Under these circumstances, the open source development model

looks different than it did before. Prior to GitHub’s rise, because

there were fewer open source projects, developers were a smaller

but on the whole more experienced group, and those who used

shared code were likely also the people contributing back.

Today, the hypergrowth of coding literacy means many inexperi-

enced developers are flooding the market. These newer developers

borrow shared code to write what they need, but they are less

capable of making substantial contributions back to those projects.

Many are also accustomed to thinking of themselves as “users” of

open source projects, rather than members of a community. Because

open source tools are more standardized and easy to use, it’s much

easier these days for someone to pop into a GitHub forum and make

a rude comment or demanding request, which burdens and exasper-

ates project maintainers.

These changing demographics have also led to a much more frag-

mented system of software, with many developers releasing new

projects and creating a confusing web of dependencies. Drew

Hamlett, who calls himself a “recovering magpie developer,” wrote a

popular post in January 2016 called “The Sad State of Web

Development,” about how web development has changed, referring

specifically to the Node.js ecosystem:

92

http://blog.codinghorror.
com/please-dont-learn-to-
code/

74

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H y D I G I TA L I N F R A S T R U C T U R E S U p p O R T p R O B L E m S A R E A C C E L E R AT I N G

“The people who have stayed in the Node community have un-

doubtedly created the most over engineered eco system [sic] that

has ever appeared. No one can create a library that does anything.

Every project that creeps up is even more ambitious than the

next….No one will build something that actually does anything. I

just don’t understand. The only thing I can think, is people are

just constantly re writing Node.js apps over and over.93

There are so many projects being written and released today that it

is simply not feasible for each one to grow a large, sustainable

community with regular contributors who passionately discuss

changes over extensive mailing list discussions. Instead, many

projects will be maintained by just one or two people. But demand

for those projects by users might still outpace the work that is

required to maintain it.

GitHub made it easy to create and contribute to new projects. This

was a blessing for the open source ecosystem, because projects

develop more rapidly, but it can be a curse to any one project main-

tainer, with more people easily reporting issues and requesting new

features, without actually contributing back themselves. These

shallow interactions only create more work for the maintainers, who

are expected to address a growing volume of requests.

It would not be unreasonable to suggest that a “post-open source”

world carries implications not just for licensing, as James Governor

originally intended with his comment, but for the process of devel-

opment itself.

93

https://medium.com/@
wob/the-sad-state-of-web-
development-1603a861d-
29f#.443lcznv1

7 5

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H y D I G I TA L I N F R A S T R U C T U R E S U p p O R T p R O B L E m S A R E A C C E L E R AT I N G

Noah Kantrowitz, a longtime Python developer and member of the

Python Software Foundation, summarized this shift in a widely

cited blog post:

“In the early days of the open source movement there were

relatively few projects and in general most people using a

project were also contributing back to it in some way. Both of

these have changed by likely uncountable orders of magnitude.

[...] As we have moved to more and more niche tools, it

becomes harder to justify the time investment to become a

contributor. ‘Scratching your own itch’ is still a powerful moti-

vator, but that alone is difficult to build an ecosystem on.

The other problem is the growing imbalance between producers

and consumers. In the past, these were roughly in balance.

Everyone put time and effort in to the Commons and everyone

reaped the benefits. These days, very few people put in that

effort and the vast majority simply benefit from those that do.

This imbalance has become so ingrained that for a company to

re-pay (in either time or money) even a small fraction of the

value they derive from the Commons is almost unthinkable.94

This is not to say that big open source projects with strong contribu-

tor communities do not exist anymore. (Node.js, which will be dis-

cussed later in this paper, is an example of a project that has

achieved this status.) It is that in addition to these successes, there

is a new class of projects today that is underserved by open source’s

current norms and expectations, and that the behavior deriving from

these new norms has affected even longer-running, bigger projects.

94

https://coderanger.net/
funding-foss/

7 6

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H y D I G I TA L I N F R A S T R U C T U R E S U p p O R T p R O B L E m S A R E A C C E L E R AT I N G

Hynek Schlawack, a Python Software Foundation fellow and contrib-

utor to Python infrastructure projects, frets about a future with a

wider demand base but only a handful of keystone contributors:

“What frustrates me most is that we have an all-time high of

Python developers and an all-time low on high quality contri-

butions.[...] As soon as pivotal developers like Armin Ronacher

slow down their churn, the whole community feels it immedi-

ately. The moment Paul Kehrer stops working on PyCA we’re

screwed. If Hawkowl stops porting, Twisted will never be on

Python 3 and git.

So we’re bleeding due to people who cause more work than they

provide. [...] Right now everyone is benefitting from what has

been built but due to lack of funding and contributions it’s

deteriorating. I find that worrying, because Python might be

super popular right now but once the consequences hit us, the

opportunists will leave as fast as they arrived.95

Open source has only been popular among mainstream developers

for perhaps five years; its long-term sustainability is rarely discussed,

or even acknowledged, by the broader software community. With

the explosion of new developers using, but not giving back to,

shared code, we are building palaces on top of crumbling

infrastructure.

95

Email interview with Hynek
Schlawack

7 7

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E H I D D E N C O S T S O F I G N O R I N G I N F R A S T R U C T U R E

The hidden costs of ignoring
infrastructure

As we’ve seen, digital infrastructure is a critical part of today’s world.

Our society is built on software, and that software is increasingly

built on infrastructure that uses open source methodology. By not

taking steps to understand and support our digital infrastructure,

what is at risk?

The dangers of not investing back into digital infrastructure can be

divided into two categories: direct and indirect costs.

Direct costs include unspotted bugs and security vulnerabilities that
could be exploited for malicious intent or lead to unexpected breaks in
software functionality. These costs are acutely felt and cause problems
that need to be immediately addressed.

Indirect costs include things like loss of qualified labor and slower
growth and innovation. While they are not immediately obvious, they
represent uncaptured social value.

Bugs, security vulnerabilities, and
interruptions in service

The introduction to this report profiled the security bug Heartbleed,

which was discovered in April 2014 in a software library called

OpenSSL. Heartbleed, because it was so widespread and affected so

many major websites, drew significant public attention to the

security vulnerabilities in software.

7 8

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E H I D D E N C O S T S O F I G N O R I N G I N F R A S T R U C T U R E

In September 2014, another major security vulnerability was found

in a key tool called Bash. Bash is included in popular operating

systems like Linux and Mac OS, and as a result, is installed on more

than 70% of the machines connected to the Internet.96 The set of

security bugs, dubbed “Shellshock,” could be exploited to allow

someone unauthorized access to a computer system. The vulnerabil-

ities had gone undetected for at least a decade. Bash was originally

authored by a developer named Brian Fox in 1987, but since 1992

has been maintained by a single developer, Chet Ramey. He works as

a senior technology architect at Case Western University in Ohio.

Another project, OpenSSH, provides a free suite of security-related

programs with widespread use across the web. Developers have

discovered multiple security vulnerabilities in its code that have

been subsequently addressed and fixed, including one in July 2015

that could allow attackers to bypass limits on password login

attempts, and one in January 2016 that could leak private

security keys.97 98

Part of the problem is that many open source projects are legacy

tools, built once by a passionate developer or group of developers,

who then lacked resources to manage their project’s success. Over

time, contributions decline as others get bored and move on, but the

project is still in active use, leaving one or two people to figure out

how to keep it alive.

Another growing issue in today’s software world, with so many new

and inexperienced developers, is that security concepts are not

taught or prioritized. New developers simply want to write code that

works; they don’t know how to make software secure, or they mis-

takenly assume that the public code they use in their software has

97

http://www.scmagazineuk.
com/openssh-flaw-opens-
the-door-to-brute-force-at-
tackers/article/428304/

96

http://timesofindia.
indiatimes.com/tech/
tech-news/Security-ex-
perts-expect-Shellshock-soft-
ware-bug-to-be-significant/
articleshow/43657819.cms

98

http://arstechnica.com/se-
curity/2016/01/bug-that-can-
leak-crypto-keys-just-fixed-
in-widely-used-openssh/

7 9

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E H I D D E N C O S T S O F I G N O R I N G I N F R A S T R U C T U R E

been audited for security. Even best practices around safely disclos-

ing or managing vulnerabilities are not commonly taught or under-

stood. Security only becomes an issue once a developer’s code has

become compromised.

Christopher Allen coauthored the first version of the Transport Layer

Security (TLS) protocol, whose subsequent versions became a

security standard used almost universally online, including by

websites like Google, Facebook and YouTube. Although today it is a

standard, of its origins, Christopher writes:

“As the co-author of TLS I would not have predicted 15 years

later that over half of the Internet would be using an imple-

mentation of TLS maintained by a 1/4 time engineer. This lack

of support led to the infamous Heartbleed bug. I tell my crypto-

currency colleagues this story today to warn them that their

leading edge crypto today may be ‘boring’ in a decade and

suffer the same fate as it will no longer be exciting and their

future hard work may be compromised.99

Finally, the stability of our software potentially relies upon the good

faith and cooperation of hundreds of developers, which introduces

significant risk. The fragility of our digital infrastructure was recently

demonstrated by a developer named Azer Koçulu.

Azer, a Node.js developer, hosted a number of libraries on a package

manager platform called npm. After a conflict with npm over trade-

mark rights on one of his projects, Azer, frustrated with the outcome,

decided to remove everything he had ever published to npm.100 One

of those libraries, left-pad, was referenced in hundreds of other

software projects. Although it was just a few lines of code, by

99

https://medium.com/@
christophera/i-ve-been-
working-to-address-this-gap-
for-a-while-thus-my-recent-
exploration-of-the-com-
mons-in-my-8094d41a874a#.
qyh31ida4 Quote edited for
clarity by source.

100

https://medium.com/@
azerbike/i-ve-just-lib-
erated-my-modules-
9045c06be67c#.4sdbklvqv

8 0

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E H I D D E N C O S T S O F I G N O R I N G I N F R A S T R U C T U R E

removing the left-pad project, Azer broke countless other software

developers’ processes. Azer’s decision caused so many issues that

npm made the unprecedented decision to republish his library,

against Azer’s will, in order to restore functionality to the rest of the

ecosystem.101 Npm also revised its policies to make it harder for

developers to remove their libraries without warning, recognizing

how individual actions could negatively affect so many others.102

Software not getting the necessary
maintenance it needs

Building digital infrastructure in a haphazard fashion means that all

software gets built more slowly and inefficiently. One example of

this can be found in the history of Python infrastructure.

An important infrastructure project for Python developers is called

Setuptools. Setuptools provides a set of tools that make writing

Python easier and more standardized.

Setuptools was written by a developer named PJ Eby in 2004. Over

the next four years, Setuptools saw widespread adoption. However,

Setuptools was difficult to implement and use, and Eby was largely

unreceptive to outside contributions and fixes, wanting to maintain—

as its original author—final say over Setuptools. In 2008, a group of

developers, led by Tarek Ziade, decided to fork the project to force

Eby to make improvements. They called the new project Distribute.

In 2013, these projects were once again merged under Setuptools.

The multi-year rift, however, underscored both the dubious state of

Python’s infrastructure tools, and the difficulty of making improve-

ments—in part because there was nobody dedicated and willing to

address the community’s problems.

101

http://www.theregister.
co.uk/2016/03/23/npm_left_
pad_chaos/

102

http://blog.npmjs.org/
post/141577284765/kik-left-
pad-and-npm

8 1

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E H I D D E N C O S T S O F I G N O R I N G I N F R A S T R U C T U R E

Python tools began to improve once the working group Python

Packaging Authority (PyPA) was formed to focus specifically on

setting better standards for packaging. One developer, Donald Stufft,

made Python packaging tools his primary focus and was hired by HP

(now under HPE) in May 2015 to continue his work. (His story will be

discussed later in this report.)103

Another example involves RubyGems.org, a website that most Ruby

developers use to host their Ruby libraries. Ruby has been used to

build major websites including Twitter, AirBnB, YellowPages, and

GitHub itself.

In 2013, a security flaw in RubyGems.org was discovered, but went

unfixed for several days, because RubyGems.org was maintained

entirely by volunteers. The volunteers planned to address it that

weekend, but in the meantime someone else discovered the flaw

and hacked the RubyGems.org server. Following the hack, the

servers had to be rebuilt from scratch. Several volunteers took time

off work, and some even took personal vacation days, in order to get

RubyGems.org up and running again as soon as possible. Because

RubyGems.org is a critical piece of Ruby infrastructure, the security

issue affected many developers and companies in turn.

The incident highlighted how pure volunteer labor limited the

amount of security and reliability that could be provided to import-

ant software infrastructure. Dozens of developers “volunteered”

during the incident, since the problem affected their regular jobs.

Unfortunately, none of them had the previous experience needed to

be helpful, and none of them continued to offer to help once the

servers were repaired. In 2015, an organization called Ruby Together

was formed to help pay pay for maintenance and development of

103

Email interview with Russell
Keith-Magee and Hynek
Schlawack

8 2

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E H I D D E N C O S T S O F I G N O R I N G I N F R A S T R U C T U R E

Ruby’s infrastructure, including RubyGems.org, using company

sponsorships.104

Loss of qualified labor
Like any community of volunteers, burnout is common among open

source contributors, who find themselves fielding requests, from

both individual users and companies, for work without

compensation.

Many developers have stories about getting requests from compa-

nies for free work. Daniel Roy Greenfeld, a Python and Django devel-

oper, wrote:

“I personally get regular demands for unpaid work (Discussions

about payment for work always stall) by healthy high profit

companies large and small for [my projects]. If I don't respond

in a timely fashion, if I'm not willing to accept a crappy pull

request, I/we get labeled a jerk. There is nothing like having

core Python/PyPA maintainers working for Redhat [sic] de-

manding unpaid work while criticizing what they consider

your project's shortcomings to ruin your day and diminish your

belief in open source.105

(Red Hat is a multinational software company with annual revenue

exceeding $2B which sells open source software solutions to enter-

prise customers.106 Because of the nature of their business, Red Hat

employees use and contribute to many open source projects; in

some ways, Red Hat has become the business poster child of open

source. The company’s financial success will be discussed later in

this report.)

104

Phone and email interview
with André Arko. Thanks to
André for his edits.

105

https://github.com/pybee/
paying-the-piper/issues/26

106

http://fortune.
com/2016/03/22/red-hat-rev-
enue-2-billion-open-source/

8 3

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E H I D D E N C O S T S O F I G N O R I N G I N F R A S T R U C T U R E

Read the Docs, the aforementioned documentation hosting service,

explicitly states on its website that they do not support custom

company installations and private support.107 One of the maintain-

ers, Eric Holscher, went as far as to comment, “Pretty sure there is

very little value in Read the Docs being open source, as private users

never contribute back, only ask for free support.” 108

Marquess, the OpenSSL contributor, made a tongue-in-cheek remark

to these repeated requests in his post about funding:

“I’m looking at you, Fortune 1000 companies. The ones who

include OpenSSL in your firewall/appliance/cloud/financial/

security products that you sell for profit, and/or who use it to

secure your internal infrastructure and communications. The

ones who don’t have to fund an in-house team of programmers

to wrangle crypto code, and who then nag us for free consult-

ing services when you can’t figure out how to use it. The ones

who have never lifted a finger to contribute to the open source

community that gave you this gift. You know who you are.109

Some developers choose to stop maintaining their projects because

they no longer have the time to dedicate to it, and hope that

somebody else picks up where they left off. Meanwhile, companies,

governments and individuals depend on these libraries for their

continued use, unaware of the underlying situation.

David Michael Ross, an engineering manager at a web agency, wrote

of his experience:

“That's the big thing for me. [...] It's knowing you did something

for free, out of love, and there's an endless stream out people

107

http://docs.readthedocs.io/
en/latest/open-source-phi-
losophy.html

108

https://twitter.com/
ericholscher/sta-
tus/689569190043201536

109

http://veridicalsystems.com/
blog/of-money-responsibili-
ty-and-pride/

8 4

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E H I D D E N C O S T S O F I G N O R I N G I N F R A S T R U C T U R E

going ‘more! more!’ and getting angry when you won't accom-

modate their edge case.

I had my phone number on one of my personal sites so friends

could get in touch with me. Took it down after a week because

people would call me in the middle of the day for plugin

support, even though there's a forum for support. There's

nothing inherently wrong with that, it just wears you down.

Makes you afraid to check email or answer the phone.110

Ryan Bigg, who writes documentation for the software framework

Ruby on Rails, announced in November 2015 that he was quitting all

open source work, explaining:

“I do not have the time or energy to invest in open source any

more. I am not being paid at all to do any open source work,

and so the work that I do there is time that I could be spending

doing ‘life stuff,’ or writing. It is not fair to expect me to do even

more work outside of my regular work, and then not get fairly

compensated (time or money) for it. It's also a great recipe for

burnout and making me just generally grumpy.111

Loss of qualified labor also does not just refer to open source con-

tributors who quit, but those who never join in the first place.

There are very few statistics on the demographics of open source

contributors, which is telling in itself. A recent analysis of GitHub

found that just 5.4% of open source contributors were women,

compared to roughly 15 to 20% of technical roles at software com-

panies overall.112

110

https://news.ycombinator.
com/item?id=8712370

111

http://ryanbigg.com/2015/11/
open-source-work/

112

The 5.4% figure refers to
open source contributors
with more than ten contribu-
tions. http://www.toptal.com/
open-source/is-open-source-
open-to-women

8 5

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E H I D D E N C O S T S O F I G N O R I N G I N F R A S T R U C T U R E

One reason why open source contributors are strikingly more ho-

mogenous than the technology sector at large is that they need time

and money to make significant contributions in the first place. These

constraints prevent otherwise qualified contributors from

entering the space.

David MacIver, creator of Hypothesis, a Python library for testing

software applications, explains why he was able to spend so much

time on the project:

“I could only do this because I had the time and money to do so.

I had the time to do so because I was being obsessive, had no

dependents, and didn’t have a job. I could only not have a job

because of the money. I only had the money because I spent the

latter half of last year with double the salary I was used to, half

the living expenses I was used to, and too borderline depressed

to spend it on anything interesting. These are not reasonable

requirements. [...] Can you produce quality software in less

time than that, working only in your free time? I doubt it.113

Cory Benfield, a core Python developer, writes:

“Generally speaking, people who aren’t cisgender, heterosexual,

white, middle-class, English-speaking men are less able to

tolerate the increased financial risk of not having a steady job.

This means that those individuals really need a steady pay

cheque to contribute most effectively. And we *need* those

contributors: diverse teams make better things than homoge-

neous teams.114

113

http://www.drmaciver.
com/2015/04/its-ok-for-your-
open-source-library-to-be-a-
bit-shitty/

114

Email interview with Cory
Benfield

8 6

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E H I D D E N C O S T S O F I G N O R I N G I N F R A S T R U C T U R E

Charlotte Spencer, a contributor to software framework Hoodie and

database PouchDB, echoes these sentiments:

“All my contributions are purely volunteered. I don't make any

money, though I would absolutely like to. I have asked veteran

open sourcerers if they are paid and they say they are not,

which discouraged me from pursuing anything (if they aren't

paid, why would I be?). I use most of my free time to do it,

which I'm trying to do less of as it was taking up my life.115

Jessica Lord, a developer, actively contributed to open source while

working at Code for America, a nonprofit organization that supports

technology in the public sector. An urban planner by education, she

stresses that she had “no computer science degree, no real production

programing [sic] experience but a GitHub portfolio.”116 Her regular

contributions drew the attention of GitHub itself, where she now

works today.

However, Jessica points out that she was able to contribute to open

source under a “privileged” set of circumstances: she took a pay cut

to work at Code for America, burned through her savings, worked

“nearly constantly” on open source projects, and had a community

of support.

Of lack of diversity in open source, Jessica writes:

“The value of common knowledge cannot be overestimated. We

must to do better. We need all the ideas from all the people.

That's what we should be aiming for.

115

Email interview with Char-
lotte Spencer

116

http://jlord.us/blog/osos-talk.
html

8 7

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E H I D D E N C O S T S O F I G N O R I N G I N F R A S T R U C T U R E

We need an open source for everyone. Not just for the privileged

and not even just for the developers.117

Jessica’s last point also underlines how enabling more diverse per-

spectives in open source can help sustain open source itself. From a

functional perspective, the vast majority of open source contributors

are developers, but plenty of other roles are needed to sustain larger

projects, including writing, project management, and outreach. Open

source projects are not dissimilar from other types of organizations,

including startups, where administration, marketing, design, and

other roles are needed to support an organization’s raw output. It is

partially because open source culture is so heavily weighted to

developers that sustainability is rarely discussed or acted upon.

Finally, the homogeneity of open source contributors impacts diver-

sity efforts in technology at large, because it is so closely tied to

hiring. As previously mentioned, many employers use open source

contributions, including GitHub profiles, to discover potential new

hires or to check a candidate’s qualifications. Employers who rely

heavily upon evidence of open source contributions are drawing

from an extremely narrow pool of candidates.

Ashe Dryden, in an influential essay called “The Ethics of Unpaid

Labor and the OSS Community,” explained:

“Deciding that someone is a good programmer based solely on

their publicly available code excludes far more than marginal-

ized people. It also excludes anyone who can't release their code

publicly because of licensing or security reasons. This also

includes a large number of freelancers and contractors who are

unable to publicly claim that they worked on a project for legal

117

http://jlord.us/blog/osos-talk.
html

8 8

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E H I D D E N C O S T S O F I G N O R I N G I N F R A S T R U C T U R E

reasons (NDAs, for instance). In an industry where we are

struggling to find enough talent, why are we artificially limit-

ing the talent pool? 118

How can we mitigate or avoid some of these costs associated with

participating in the building of digital infrastructure today? First,

let’s look at how infrastructure projects are currently supported.

118

http://www.ashedryden.com/
blog/the-ethics-of-unpaid-la-
bor-and-the-oss-community

Sustaining Digital
Infrastructure

"While OpenSSL does ‘belong to

the people’ it is neither realistic nor

appropriate to expect that a few hundred,

or even a few thousand, individuals

provide all the financial support."

 – Steve Marquess, OpenSSL

9 0

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

B U S I N E S S m O D E L S F O R D I G I TA L I N F R A S T R U C T U R E

Business models for digital
infrastructure

Some parts of digital infrastructure function well in a business

context. Databases and hosting services, for example, tend to be

well-funded and profitable businesses, because they can charge for

access. Like electricity or water utilities, access to a server or

database can be metered, charged for, and shut off if fees go unpaid.

Heroku (mentioned at the beginning of this paper) and Amazon Web

Services are two prominent examples of platforms that sell digital

infrastructure services to software developers for a fee. (Note that

neither project is open source.) Similar open source projects at this

level of infrastructure, such as OpenStack (a platform competitive to

Amazon Web Services) or MySQL (a database), have found corporate

homes. OpenStack is funded by a consortium of companies and

MySQL was acquired by Oracle.

Part of what makes these services financially attractive is the lack of

noise. A developer may use 20 different libraries, all with different

functions, in a single software application, but they only need one

database. Therefore, successful projects are more likely to get the

attention and care that they need.

Another helpful way of thinking about infrastructure that can be

charged for is that if there is an immediate risk of downtime, it probably

has a business model. In other words, a server can have unexpected

interruptions in service, the way electricity might unexpectedly shut off,

but a programming language does not “break” or have downtime in the

same way, because it is a system of information.119 119

Thanks to Sam Gerstenzang for
framing this distinction: https://
twitter.com/gerstenzang/sta-
tus/687404438005366784

9 1

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

B U S I N E S S m O D E L S F O R D I G I TA L I N F R A S T R U C T U R E

For these types of open source projects, business models tend to

revolve around finding services or support to charge for. This works

for projects with significant enterprise use, particularly when the

problem is technically complex, or a company needs a feature

to be built.

Bounties
On a small scale, individuals or companies sometimes post

“bounties”, which are cash prizes for certain development milestones.

For example, IBM regularly requests new features for various

projects using a website called Bountysource, offering up to $5,000

per task. Bountysource is a popular platform to find and post

bounties; it has over 26,000 members.120

Bounties help address the aforementioned issues of simply donating

to a project. Because bounties are clearly tied to an outcome, the

money will get used. On the other hand, bounties can create

perverse incentives for contributing to a project.

Bounties can dictate which work does or doesn’t get done, and

sometimes that work doesn’t align with a project’s priorities. It can

also introduce noise into the system: for example, a company could

offer an expensive bounty for a feature that the project owners do

not consider important.

On the contributor side, outsiders with no knowledge of a project

might jump in just to complete the bounty, then leave. Or, they

might do a poor job of completing the request, because they are

trying to collect bounties. Finally, bounties can be appropriate for

funding new features or prominent bugs, but are less practical for

120

https://www.bountysource.
com/

9 2

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

B U S I N E S S m O D E L S F O R D I G I TA L I N F R A S T R U C T U R E

funding ongoing operations, such as customer support or

maintenance.

Jeff Atwood, the creator of Stack Overflow, noted these problems

with bounty programs, particularly with regard to security:

“One unfortunate side effect of this bug bounty trend is that it

attracts not just bona fide programmers interested in security,

but anyone interested in easy money. We've gotten too many

‘serious’ security bug reports that were extremely low value. And

we have to follow up on these, because they are ‘serious,’ right?

Unfortunately, many of them are a waste of time…The incen-

tives feel really wrong to me. As much as I know security is

incredibly important, I view these interactions with an increas-

ing sense of dread because they generate work for me and the

returns are low.121

Services
On a larger scale, one of the best-known and oft-cited examples of

an open source business model is Red Hat, the aforementioned

enterprise company, which offers support, training and other

services to enterprises that use Linux. Red Hat was founded in 1993

and is a publicly traded company with reported revenues of

$2B per year.

Although Red Hat has been wildly successful from a financial stand-

point, many are quick to point out that it is an anomaly unlikely to

be repeated again. Red Hat benefited from first mover advantage for

the technology it supports. Matt Asay, a journalist who focuses on

open source, noted that Red Hat uses a unique set of patents and

121

http://blog.codinghorror.
com/given-enough-money-
all-bugs-are-shallow/

9 3

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

B U S I N E S S m O D E L S F O R D I G I TA L I N F R A S T R U C T U R E

licensing to protect its enterprise market. Asay, once a major propo-

nent of open source businesses, now believes that some proprietary

licensing is necessary to build a serious business.122 Matthew Aslet

of the 451 Group, a research group, similarly found that most suc-

cessful “open source” enterprises actually use some form of commer-

cial licensing.123

Docker, the previously mentioned open source project that helps

applications run efficiently, is a more recent example of a company

attempting this model. Docker has raised $180M in venture capital

from investors, with a reported $1B valuation from private inves-

tors.124 As their market share has grown, Docker has begun offering

enterprise-level support services. Yet without strong revenues,

Docker could simply be another example of venture capital making a

“loss leader” infrastructure investment.

On a smaller scale, many developers offer consulting services to

subsidize their work. Hoodie is a lightweight software framework

based on Node that has found success with consulting services.

Hoodie itself is an open source project. Several maintainers earn

money through a boutique firm, Neighbourhoodie, that offers

software development services.125 Although Neighbourhoodie spe-

cializes in the Hoodie framework, Hoodie is still a fairly new project,

so some of their work comes from non-Hoodie-related projects.126 In

Hoodie’s case, the services model is meant to support the salaries of

several maintainers, rather than aiming for a Red Hat-sized enter-

prise strategy.

Consulting is a viable option for independent developers, if there are

enough people using the project who are willing and able to pay for

extra help. However, on a small scale, it can also distract developers

122

http://www.theregister.
co.uk/2011/03/29/red_hat_
billions/

123

https://blogs.
the451group.com/open-
source/2008/10/13/open-
source-is-not-a-business-
model/

124

https://www.crunchbase.
com/organization/docker#/
entity

125

http://neighbourhood.ie/

126

Phone call interview with Jan
Lehnardt

9 4

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

B U S I N E S S m O D E L S F O R D I G I TA L I N F R A S T R U C T U R E

from improving the project itself, as the one or two maintainers are

now spending their time building a business and providing services

that may or may not align with a project’s maintenance needs.

Aiming for a consulting business can also put creators at odds with

making the product easy to use and get started with, which is in the

spirit of open source. Twisted, the aforementioned Python library,

shared a playful testimony from one of its users, a company called

Mailman: “You guys have a big problem, because it was way too easy to

do! How are you going to make the big consulting bucks? :)” 127

In the end, the “business model” for an open source project is not

dissimilar from simply freelancing.

Paid licenses
Some developers feel that licensing could provide at least a partial

solution to open source’s funding problems. If open source projects

are being heavily used, why not charge for them?

These “paid licenses” are not technically open source licenses, accord-

ing to the Open Source Initiative’s definition.128 Rather, they are

initiatives attempting to balance the very real need for paid work

with the desire to make code available to the public. This type of

code might be called “source visible” or “source available.” Fair

Source, for example, describes itself as “[offering] some of the benefits

of open source while preserving the ability to charge for the

software.” 129

The Fair Source license was announced in November 2015 by a

company called Sourcegraph to address the need for a paid license.

127

https://twistedmatrix.com/
trac/wiki/SuccessStories

128

https://opensource.org/
definition

129

https://fair.io/

9 5

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

B U S I N E S S m O D E L S F O R D I G I TA L I N F R A S T R U C T U R E

The license terms were drafted by Heather Meeker, a lawyer who

also worked on the core team for the Mozilla Public License v2.0.

Under Fair Source, code is free to view, download, execute, and

modify up to a certain number of users in an organization. After that

limit is reached, the organization must pay a licensing fee, deter-

mined by the publisher.130 In other words, Fair Source code is free for

personal and small business use, but provides a legal basis to charge

for bigger commercial use cases.

Sourcegraph’s announcement of the Fair Source license, which they

themselves now use, sparked a spirited debate about monetizing

open source. (It is worth noting that a comparable “shareware”

movement was attempted and popularized in the 1980s.)

Mike Perham, a maintainer of Sidekiq, a popular Ruby developer tool,

also recently suggested that open source contributors use a “dual

license” to monetize their work, charging companies for access to a

permissive MIT license instead of a more restrictive AGPL license

that would require attribution. His theory is that by making AGPL

the default license, “businesses will pay to avoid it.”

To support this idea, Perham reminded his audience:

“Remember: Open Source != Free Software. The source may be

viewable on GitHub but that doesn’t mean anyone can use it for

any purpose.131 There’s no reason you can’t make your source code

accessible but also charge to use it. As long as you are the owner of

the code, you have the right to license it however you want.

…[The] reality is most smaller OSS projects have a single person

130

https://fair.io/

131

It is worth noting that Mike
is correct about code hosted
on GitHub with no specified
license, but an open source
license that meets the OSI’s
definition must include
freedom to redistribute. This
quote highlights how the
modern definition of “open
source” is blurring, with col-
loquial use becoming distinct
from historical definition.

9 6

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

B U S I N E S S m O D E L S F O R D I G I TA L I N F R A S T R U C T U R E

doing 95% of the work. If this is true, be grateful for unpaid

help but don’t feel guilty about keeping 100% of the income.132

Charging businesses provides another option for developers to

support their work, particularly if it is one or two maintainers sup-

porting an active project. However, not every project could success-

fully charge for its work, especially older projects, or infrastructure

projects that look more like public goods than consumer products,

such as programming languages.

While paid licensing could work for certain product scenarios, this

model is also arguably at odds with the enormous social value that

open source has provided, which suggests that when software is

free, innovation follows. The goal should not be to move back

towards a closed software society, where progress and creativity are

constrained, but to sustainably support a public ecosystem in which

software can be freely created and distributed.

132

http://www.mikeperham.
com/2015/11/23/how-to-
charge-for-your-open-
source/

9 7

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

F I N D I N G A S p O N S O R O R D O N O R F O R A N I N F R A S T R U C T U R E p R O j E C T

Finding a sponsor or donor for an
infrastructure project

The other option for supporting infrastructure projects is to find

sponsorships or donations. This practice is especially common in the

following situations:

There is no paid client demand for services associated with the project

Charging directly for access would prevent adoption (one could not
charge to use Python as a programming language, for example, because
nobody would use it; it would be like charging people to speak English)

There isn’t enough capacity to manage paid work, or no desire on the
developer’s part to deal with business matters

Neutrality and non-commercialization are perceived to be important
for governance purposes

In this situation, a project maintainer will look for benefactors who

believe in the value of their work and are willing to financially

support them. There are two major sources of funding at the

moment: software companies and other developers.

Crowdfunding
Some development work gets funded through crowdfunding cam-

paigns, such as Kickstarter or Indiegogo. Bountysource, the afore-

mentioned open source bounty website, also has a platform called

9 8

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

F I N D I N G A S p O N S O R O R D O N O R F O R A N I N F R A S T R U C T U R E p R O j E C T

Salt, dedicated to crowdfunding open source projects.

Andrew Godwin, a London-based Django core developer, successfully

raised £17,952 (roughly $25,000) from 507 backers on Kickstarter to

fund database work for Django. The project was fully funded in less

than four hours.

Of his decision to raise funds for an open source project,

Godwin wrote:

“A lot of open source code gets done for free. However, my free

time is limited. I currently have a day a week available for work,

and I'd love to spend it improving Django rather than doing

consulting or contracting.

The idea here is twofold—to guarantee the project a solid

period of work and at least 80 or so hours of coding time, as

well as to try and show the world that open source software

really can pay for developers' time.133

Similarly to bounties, crowdfunding can be useful for funding new

features or development work with a clear, tangible outcome.

Crowdfunding can also help reduce perverse incentives from

bounties, since campaigns take a bit more time and effort than

posting a bounty, and tend to get funded based on public trust in

the campaign owner’s ability to deliver. In this case, Godwin had

been a core contributor to Django for six years and was well-known

in the community.

However, crowdfunding still does not address the need for funding

related to ongoing operations and overhead. It is also not a

133

https://www.kickstarter.com/
projects/andrewgodwin/
schema-migrations-for-djan-
go/description

9 9

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

F I N D I N G A S p O N S O R O R D O N O R F O R A N I N F R A S T R U C T U R E p R O j E C T

recurring source of capital, and there is a mental and time cost

associated with planning and executing a crowdfunding campaign

each time. Finally, backers of these projects tend to be fellow devel-

opers, or small company contributions—there are only so many times

a campaign owner can tap the same source of capital to fund

their projects.

Godwin himself later wrote of the experience:

“I don't think [crowdfunding] meshes entirely well with general

open source development; not only is it just a one-time payment,

but the idea of rewards often doesn't match well and it requires

something you can entirely bound and describe up front.

Just relying on people's good will [sic] isn't going to work, and

we'll end up disproportionately appealing to independent

developers or developers on a personal level and that's not as

sustainable I don't think.134

Aside from crowdfunding campaigns, several platforms have also

emerged to encourage the practice of “tipping” open source contrib-

utors: that is, pledging small amounts of recurring revenue to a

contributor as a sign of support for his or her work. Two popular

platforms are Patreon (which does not exclusively focus on open

source contributors) and Gratipay (which tends to attract a more

technical community).

The idea of recurring revenue is appealing, but suffers some of the

same problems as crowdfunding. Namely, most patrons are develop-

ers themselves, with limited amounts of capital to pledge to each

other. Donations are widely considered to be helpful as “beer money,”

134

https://github.com/pybee/
paying-the-piper/issues/3

1 0 0

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

F I N D I N G A S p O N S O R O R D O N O R F O R A N I N F R A S T R U C T U R E p R O j E C T

but not “rent money.” Gratipay has 122 teams on its platform who

collectively receive $1,000 per week, meaning that the average

project receives less than $40 per month.135

Even very large projects such as OpenSSL only generated $2,000 in

annual donations prior to Heartbleed. As mentioned before, after

Heartbleed, team member Steve Marquess noted the “outpouring of

grassroots support from the OpenSSL community”: the first round of

donations came out to roughly 200 donors for a total of $9,000.

Marquess thanked the community for its support, but also noted:

“Even if those donations continue to arrive at the same rate

indefinitely (they won’t), and even though every penny of those

funds goes directly to OpenSSL team members, it is nowhere

near enough to properly sustain the manpower levels needed to

support such a complex and critical software product. While

OpenSSL does ‘belong to the people’ it is neither realistic nor

appropriate to expect that a few hundred, or even a few

thousand, individuals provide all the financial support. The

ones who should be contributing real resources are the

commercial companies and governments who use OpenSSL

extensively and take it for granted.136

(To Marquess’s point, subsequent corporate donations were larger, as

companies had more to give than individuals. The biggest donation

came from Chinese smartphone maker Smartisan, to the tune of

$160,000.137 Smartisan has continued to make substantial donations

to OpenSSL.138)

Finally, the reality is that there are too many projects, all valuable or

critical in some way, and not enough donors, for the technical

136

http://veridicalsystems.com/
blog/of-money-responsibili-
ty-and-pride/

137

http://blogs.wsj.com/
cio/2014/08/20/openssl-
seeing-more-support-post-
heartbleed/

138

Email interview with Steve
Marquess

135

As of November 2015. https://
gratipay.com/

1 0 1

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

F I N D I N G A S p O N S O R O R D O N O R F O R A N I N F R A S T R U C T U R E p R O j E C T

community—companies or individuals—to be able to lend mindshare

and donate significantly to all of them.

Corporate sponsorship of
infrastructure projects
On a larger scale, in some instances, a project’s value becomes so
widely regarded that a company will hire a contributor to work on
the project full-time.

John Resig is the author of jQuery, a JavaScript programming library

that is used by nearly two-thirds of the top million most-trafficked

websites.139 He built and released jQuery as a side project in 2006.

John joined Mozilla in 2007 as a developer evangelist, specifically

focusing on JavaScript libraries.140

As jQuery continued to grow in popularity, it became apparent that,

in addition to further technical development, it needed to formalize

some of its governance aspects. Mozilla suggested that John work

on jQuery full-time from 2009 to 2011, which he did.

Of the experience, John wrote:

“Over the past year and a half Mozilla gave me the ability to

work on jQuery full-time. This has resulted in 9 releases of

jQuery...and a drastically improved jQuery organization (we’re

now under the Software Freedom Conservancy non-profit, hold

frequent team meetings, public votes, provide public status

updates, and actively encourage participation). Thankfully the

jQuery project is running quite smoothly these days, allowing

me to scale back my involvement to a more-reasonable amount

of time and take on other development work.141

139

http://libscore.com/#libs

140

http://ejohn.org/blog/
mozilla/

141

http://ejohn.org/blog/next-
steps-in-2011/

1 0 2

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

F I N D I N G A S p O N S O R O R D O N O R F O R A N I N F R A S T R U C T U R E p R O j E C T

After using his time at Mozilla to get jQuery the organizational

support it needed, John announced he would join Khan Academy to

focus on new projects outside of jQuery.

Cory Benfield, a Python developer, has a similar story. Cory contrib-

uted to open source projects in his spare time, eventually becoming

a core developer for a critical Python library called Requests.

Benfield notes:

“This library is up there with Django in terms of being ‘critical

infrastructure’ for Python developers, and yet before I came on

to [sic] the project was essentially maintained by a single

individual.142

Benfield estimates that he volunteered on the project roughly 12

hours per week for nearly four years, in addition to his full-time

job.143 Nobody was paid to work on Requests.

During this time, HP hired an employee, Donald Stufft, to focus

specifically on supporting Python-related projects, since HP consid-

ers Python to be critical to its software. (Donald is the aforemen-

tioned developer who is paid full-time to focus on Python

packaging.) Donald convinced his manager to hire Cory to focus

full-time on Python projects, where he currently works today (now

under HPE).

Companies are well-positioned to financially support volunteer

projects that they consider to be critical to their business, and when

situations like John Resig’s or Cory Benfield’s happen, they are

warmly received. However, there are complications.

142

Email interview with Cory
Benfield

143

Email interview with Cory
Benfield

1 0 3

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

F I N D I N G A S p O N S O R O R D O N O R F O R A N I N F R A S T R U C T U R E p R O j E C T

Firstly, no company is obligated to hire someone to work on projects

in these situations; they tend to come about by chance from a sym-

pathetic patron. Once an employee is hired, there is always the

possibility of losing that sponsorship, especially because the

employee does not directly contribute to the company’s bottom line.

This is especially dangerous if a project’s sustainability depends

upon one contributor being employed full-time. In the case of

Requests, Cory is the only full-time contributor (there are two other

part-time contributors, Ian Cordasco and Kenneth Reitz).

One situation where this occurred was in the case of rvm, a critical

piece of Ruby infrastructure. Michal Papis, its primary author, was

hired by Engine Yard to support rvm’s development from 2011 to

2013. When that sponsorship ended, however, Papis had to run a

crowdfunding campaign to support rvm’s ongoing development.144

It wasn’t just rvm, either. Engine Yard had employed a number of

maintainers of Ruby infrastructure projects, including JRuby, Ruby on

Rails 3, and bundler. When Engine Yard was forced to make the right

business decision for their company, which was to scale back

support, all of these projects lost full-time maintainers, nearly all at

the same time.

Another concern is that a single company could have undue influ-

ence over the project, since they are effectively the only sponsor.

Cory Benfield notes that that the contributor him or herself could

also have undue influence over the project, since they now have

much more time than others to make contributions.145 In theory, that

decision could be made between a company and a maintainer,

without involving the project’s larger community.

144

https://www.bountysource.
com/teams/rvm/fundraiser

145

Email interview with Cory
Benfield

1 0 4

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

F I N D I N G A S p O N S O R O R D O N O R F O R A N I N F R A S T R U C T U R E p R O j E C T

One example where this occurred was in the case of Express.js, a

critical framework for the Node.js ecosystem. When the original

author decided to move on from the project, he transferred the

assets (including the code repository and domain name) to a

company called StrongLoop, whose employees agreed to help

maintain the project.146 However, StrongLoop didn’t provide the

support that the community expected, and because StrongLoop

alone had administrative access, it became difficult for the commu-

nity to contribute. Doug Wilson, a lead maintainer on the project

who is unaffiliated with StrongLoop, still had commit access and

continued to manage the project’s workload, struggling to handle

the project’s needs by himself.

Following StrongLoop’s acquisition by IBM, Doug declared that

StrongLoop had effectively killed the contributor community:

“At the time of the StrongLoop move, we had active members

like @Fishrock123 working to create...documentation. Then all

there was was me as a single person doing this in my free time

with mounting support requests….all this time I've been killing

myself, I have been committing under the StrongLoop name.

No matter what happens, I will not ever commit again to any

repository under StrongLoop's name.147

Ultimately, the Express.js project was moved out of StrongLoop’s

administration and into the Node.js Foundation, which helps steward

projects that are part of the Node.js technology ecosystem.

For very large and well-known open source projects, however, hiring

developers is not an unusual practice. The Linux Foundation

reported, for example, that more than 80 percent of Linux kernel

146

https://strongloop.com/
strongblog/tj-holoway-
chuk-sponsorship-of-ex-
press/

147

https://github.com/
strongloop/express/
issues/2844#issuecom-
ment-172414097

1 0 5

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

F I N D I N G A S p O N S O R O R D O N O R F O R A N I N F R A S T R U C T U R E p R O j E C T

development is done by developers who are paid for their work.148

The Linux Foundation also hires paid Fellows to work on infrastruc-

ture projects full time, including Greg Kroah-Hartman, a Linux kernel

developer, and Linus Torvalds himself, the creator of the

Linux kernel.

148

http://www.linuxfoundation.
org/news-media/announce-
ments/2015/02/linux-founda-
tion-releases-linux-develop-
ment-report

1 0 6

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H y I S I T S O H A R D T O F U N D T H E S E p R O j E C T S ?

Why is it so hard to fund
these projects?

Today, infrastructure work is being cobbled together by freelance

developers or those with “day jobs,” doing unrelated paid client work

for part of the month and working on open source projects in their

spare time. While this is a viable way to pay for one’s lifestyle, it

does not adequately reflect the social value that these

projects deserve.

Stunningly, although everybody agrees there is a problem (whether

defined as “volunteer burnout”, community mismanagement or a

greater lack of funding), the conversation has not progressed beyond

meager, short-term solutions such as tipping or crowdfunding.

Talk to developers who found a way to pay themselves, and you’ll

hear the word “lucky” thrown around: lucky to have been hired by a

company, lucky to have gotten publicity and donations, lucky to

have stumbled upon a business model, lucky to not have a family or

mortgage to worry about. Everybody is getting lucky. Luck lasts for

a couple of months, maybe a year or two, and then it runs out.

Why is it so hard to fund digital infrastructure?

Fundamentally, digital infrastructure has a free rider problem.

Resources are offered for free, and everybody (whether individual

developer or large software company) uses them, so nobody is

incentivized to contribute back, figuring that somebody else will

step in. Left unchecked, this will lead to a tragedy of the commons.

1 0 7

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H y I S I T S O H A R D T O F U N D T H E S E p R O j E C T S ?

In addition to the macroeconomic challenge of the commons, there

are several reasons why supporting digital infrastructure is particu-

larly complicated. Although they have been touched upon through-

out this report, they are summarized here:

There is a misperception that this is a “solved problem.” The pervasive
belief, even among stakeholders such as software companies, that open
source is well-funded, makes it harder to generate support. Some infra-
structure projects operate sustainably, either because they have a work-
ing business model or sponsorship, or because their required upkeep is
limited. An unfamiliar audience will also associate open source with
enterprise companies like Red Hat or Docker and assume the problem
has been solved. However, these situations are the outliers, not the rule.

There is a lack of cultural understanding and awareness about the
problem. Outside of the open source community, nearly everybody
remains unaware of infrastructure’s funding issues, and the topic is
perceived to be dry and technical. Developers needing support tend to
have a highly technical focus and aren’t comfortable advocating for the
business side of their work. Taken together, there is no momentum to
change a broken situation.

Digital infrastructure is rooted in open source, whose volunteer culture
discourages talk of money. Although this attitude has made open source
what it is today, it also makes it difficult for developers to openly discuss
their needs without feeling guilty or worrying about not being perceived
as a team player. Open source’s highly distributed and democratic nature
also makes it difficult to coordinate and sustain institutional actors who
could act as advocates for their needs.

Digital infrastructure is highly distributed, compared to physical infra-
structure. Unlike planning the construction of a bridge, it’s not always
clear which projects are useful until after they have already taken off.

1 0 8

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

w H y I S I T S O H A R D T O F U N D T H E S E p R O j E C T S ?

They cannot be planned beforehand by a centralized entity. At the other
end of the lifecycle, some projects are meant to decline as other, better
solutions take their place. Digital infrastructure is distributed across
hundreds of projects, large and small, built by individuals, groups and
companies; it would be a behemoth task to catalog them all.

“It's hard to find funding...for the average developer (me) some of

them are totally out of reach. [Kickstarter] only works if you

either go viral or hire someone to do all of the marketing/

design/promotions….Turning a project into a business is great

too, but...these are all things that take away from development

(which is the part I like to focus on). If I wanted to get a grant, I

wouldn't even know where to start.149

- Kyle Kemp, freelance developer and open source contributor

149

https://github.com/pybee/
paying-the-piper/issues/53

1 0 9

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

Institutional efforts to support digital
infrastructure

There are some institutional efforts to collectively organize and help

support open source projects. Some are independent software

foundations; other sources of support come from software compa-

nies themselves.

Administrative support and fiscal sponsorship
Several foundations provide organizational support, such as fiscal

sponsorship, to open source projects: in other words, taking care of

the non-coding tasks that many developers would prefer not to do.

The Apache Software Foundation, incorporated in 1999, was created

partially to support development of the Apache HTTP Server, which

serves roughly 55% of all websites worldwide.150 Since then, it has

become a home for over 350 open source projects.151 Apache struc-

tures itself as a decentralized community of developers, with no

full-time employees and nearly 3,000 volunteers. It offers several

services to projects, mostly around organizational, legal, and devel-

opment support. As of 2011, Apache had an annual budget of over

$500,000, most of which comes from grants and contributions.152

The Software Freedom Conservancy, established in 2006, also

provides nonprofit administration services for over 30 free and open

source projects. Projects supported by the Software Freedom

Conservancy include Git, the aforementioned version control system

upon which GitHub built its platform, and Twisted, the aforemen-

tioned Python library.153

150

http://w3techs.com/
technologies/overview/
web_server/all

151

http://www.apache.org/

152

https://en.wikipedia.org/wiki/
Apache_Software_Foun-
dation

153

https://sfconservancy.org/
members/current/

1 1 0

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

Other examples of foundations who provide organizational support

include The Eclipse Foundation and Software in the Public Interest.

The Linux Foundation and Mozilla Foundation also support external

open source projects in various ways (discussed later in this section),

though that is not the primary purpose of their mission.

It is important to note that these foundations provide legal and

administrative, but rarely financial, support. Therefore, sponsorship

by Apache or the Software Freedom Conservancy alone does not

fund a project in itself; the foundations only help make it easier to

process donations and manage the project.

Another important observation is that these initiatives support free

and open source software from a philosophical perspective, but do

not focus on infrastructure specifically. For example,

OpenTripPlanner, a project supported by the Software Freedom

Conservancy, is trip planner software; although the code that

powers it is open source, it is a consumer application, not

infrastructure.

Creating a foundation to support a project
Some projects are large enough to be managed through their own

foundations. Python, Node.js, Django, and jQuery all have comple-

mentary foundations.

There are two important aspects to getting a foundation off the

ground: qualifying for tax-exempt status and finding funding.

Qualifying as a 501(c)(3) can be challenging for these projects, due

to the lack of awareness about open source technology and

1 1 1

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

tendency to see open source as a non-charitable activity. In 2013, a

controversy revealed that the IRS had internally identified a list of

groups applying for tax-exempt status that would require further

scrutiny; “open source” was one of these.154 155 Unfortunately, these

constraints make it difficult for projects to institutionalize.

For instance, Russell Keith-Magee, who until recently was president

of the Django Software Foundation, explained that the foundation

cannot directly “fund” software development of Django, without the

risk of losing its 501(c)(3) status. Instead, they “support” its develop-

ment through community activities.

In June 2014, the Yorba Foundation, which made Linux productivity

software, was denied 501(c)(3) status, after waiting nearly four and a

half years for the decision. Jim Nelson, its executive director, was

particularly alarmed by the IRS’s reasoning: because their software

could be used by commercial entities, Yorba’s work could not be

considered charitable. A letter from the IRS explained:

“Mere publishing under open source licenses for all to use does

not show that the poor and underprivileged actually use the

Tools.[…]You do not know who uses the Tools much less what

kind of content they create with the Tools.156

Nelson pointed out the flaws in this reasoning in a blog post, com-

paring it to any other public good:

“There’s a charitable organization here in San Francisco that

plants trees throughout the city for the benefit of all. If one of

their trees...cools the cafe’s patrons as they enjoy their espres-

sos, does that mean the tree-planting organization is no

longer a charity?157

154

https://en.wikipedia.org/wiki/
IRS_targeting_controversy

156

https://blogs.gnome.org/
jnelson/2014/06/30/the-new-
501c3-and-the-future-of-
free-software-in-the-united-
states/

155

http://www.forbes.com/sites/
kellyphillipserb/2014/07/17/
not-just-the-tea-party-irs-
targeted-turned-down-tax-
exempt-status-tied-to-open-
source-software/

157

https://blogs.gnome.org/
jnelson/2014/06/30/the-new-
501c3-and-the-future-of-
free-software-in-the-united-
states/

1 1 2

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

Projects that qualify for 501(c)(3) status tend to mention their focus

on community, as with the Python Software Foundation, whose

mission is “to promote, protect, and advance the Python programming

language, and to support and facilitate the growth of a diverse and

international community of Python programmers.” 158

Alternatively, some projects apply to become a trade association

through a 501(c)(6) status. The jQuery Foundation is an example of

this, describing itself as a “member supported non-profit trade associa-

tion for web developers.” 159 The Linux Foundation is also a trade

association.

The second aspect of formalizing project governance through a

foundation is finding the right source of funding. Some foundations

are supported by individual contributions, but have comparatively

small budgets.

The Django Software Foundation, for example, manages Django, the

most popular web framework written in Python, used by companies

like Instagram and Pinterest. The foundation is run by volunteers and

takes in less than $60,000 in donations per year.160 Last year, they

received a one-time $150,000 grant from the Mozilla Foundation.161

The other common source of funding is corporate sponsors.

Corporate entities can be well-suited for funding because they use

these software projects themselves. The Linux Foundation is one of

the most successful outliers, due to the fundamental value of the

Linux kernel to nearly every corporate entity. The Linux Foundation

has $30M in annually managed capital from corporate members

such as IBM, Intel, Oracle, and Samsung, and is growing.162

158

https://www.python.org/psf/

159

https://jquery.org/

160

As of 2013. https://www.djan-
goproject.com/foundation/
reports/2013/

161

https://www.djangoproject.
com/weblog/2015/dec/11/
django-awarded-moss-grant/

162

http://collabprojects.linux-
foundation.org/sites/collab-
projects/files/lf_collabora-
tive_projects_brochure.pdf

1 1 3

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

Creating a foundation to support a project is sensible for very large

infrastructure projects. It is less suitable for smaller projects, due to

the work, resources, and ongoing corporate sponsorship needed to

create a sustainable organization.

Node.js is a recent successful example of using a foundation to

support a large project. Node.js is a JavaScript framework, developed

in 2009 by Ryan Dahl and several other developers working at

Joyent, a private software company. It became extremely popular,

but began to suffer governance constraints due to Joyent’s patron-

age, whom some felt could not fully represent an enthusiastic and

fast-growing Node.js community.

In 2014, a group of Node.js contributors threatened to fork the

project. Joyent tried to address governance issues by forming an

Advisory Board for the project, but the project was forked anyway,

under the name io.js.163 In February 2015, an intent to form a 501(c)

(6) organization was announced which would remove Node.js from

Joyent’s stewardship. The Node.js and io.js communities voted to

work together under this new entity, called the Node.js Foundation.

The Node.js Foundation, structured under the advisorship of the

Linux Foundation, has a number of corporate sponsors who finan-

cially contribute to its budget, including IBM, Microsoft, and

PayPal.164 These sponsors see influential value in supporting the

development of a popular software project that powers the web,

and they have the resources to spare.

Another promising example is Ruby Together, an organization

launched by several Ruby developers to support Ruby infrastructure

projects. Ruby Together is structured as a trade association, in which

corporate and individual donors pledge money to fund full-time

163

http://www.infoworld.com/
article/2835159/node-js/
node-js-governance-model-
pushed-as-forking-talk-en-
sues.html

164

https://www.joyent.com/
blog/introducing-the-node-
js-foundation

1 1 4

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

developers to improve core Ruby infrastructure. Donors elect a

volunteer board of directors, who help decide which projects Ruby

Together should work on each month.

Ruby Together was conceived by, and funds the work of, two devel-

opers: André Arko and David Radcliffe. As of April 2016, they now

fund the work of four other infrastructure maintainers. Their

monthly budget as of March 2016 was just over $18,000/month,

funded entirely by donations. Ruby Together was announced in

March 2015 and is still a new project, but could serve as a blueprint

for a more community-oriented model to fund work on other

software infrastructure projects.165

Corporate programs
Software companies support infrastructure projects in various ways.

As beneficiaries of infrastructure projects, they contribute back by

reporting bugs, suggesting or submitting new features, and provid-

ing other forms of feedback. Some companies encourage their em-

ployees to contribute to critical projects on company time. Many

employees have significant contributor roles for external open

source projects. For some employees, open source work is an explicit

part of their job. Dedicating salaried time is one of the most import-

ant ways that companies contribute to open source.

Large companies like Google or Facebook are eagerly embracing

open source as way to build trust and influence, because they are

the only institutional actors large enough to absorb its costs without

needing a financial return on investment. Open source projects help

strengthen a company’s influence, whether by releasing their own

165

https://rubytogether.org/

1 1 5

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

open source projects or hiring key developers to work on an open

source project full-time.

These practices are not limited to pure software companies, either.

Walmart, for example, is a major supporter of open source, investing

over $2M in an open source project called hapi.166 Eran Hammer, a

senior developer at Walmart Labs, was quick to explain that “open

source ain’t charity” and that “the size of the company using [hapi]

translated to ‘ free’ engineering resources.” 167 Dion Almaer, the former

VP of engineering at Walmart Labs, noted that their commitment to

open source helped with recruiting, building a strong company

culture, and “a slew of areas of leverage.”168

In terms of direct support for maintainers, sometimes companies

hire a maintainer to work on full-time on an open source project.

Companies also occasionally donate to project crowdfunding cam-

paigns. For example, a recent Kickstarter campaign to fund core

work on Django raised £32,650 (roughly $50,000); Tom Christie, the

campaign organizer, reported that 80% of total financing came from

businesses.169 However, these efforts are still ad hoc, and digital

infrastructure as a CSR (corporate social responsibility) issue is not

yet common among for-profit software companies. There is room for

advocacy here.

One of the best-known corporate programs is Google’s Summer of

Code (GSoC), mentioned earlier in this paper, which provides

stipends to university students to work on open source projects for a

summer. Students are paired with mentors to help familiarize them

with the project. Summer of Code is maintained by the Open Source

Programs Office at Google, and has funded thousands of students.170

171 GSoC’s goal is to give students an opportunity to write code for

166

http://www.infoworld.com/
article/2608897/open-
source-software/walmart-s-
investment-in-open-source-
isn-t-cheap.html

167

http://hueniverse.
com/2014/08/15/open-
source-aint-charity/

168

http://todogroup.org/blog/
why-we-run-an-open-source-
program-walmart-labs/

169

https://github.com/pybee/
paying-the-piper/issues/50

170

https://developers.google.
com/open-source/gsoc/

171

https://en.wikipedia.org/wiki/
Google_Summer_of_Code

1 1 6

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

open source projects; it is not focused on funding those projects

themselves.

Last year, Stripe, a payments processing company, announced an

“Open-Source Retreat,” offering stipends of up to $7,500 per month

for a three month retreat at Stripe’s offices.172 They initially intended

to offer just two grants, but after receiving 120 applications, they

expanded the program to four grantees.

The grantees were enthusiastic about the experience. One of the

grantees, Andrey Petrov, continues to maintain the aforementioned

Python library called urllib3, now used by every Python developer.

Of the experience, Andrey wrote,

“Publishing and contributing to open source is going to contin-

ue happening regardless whether I’m getting paid for it or not,

but it will be slow and unfocused. Which is fine, it’s how open

source work has always worked. But it doesn’t need to be this

way. [...]

If you’re a tech company, please allocate a budget for open

source grants and sponsorships. Distribute it on Gittip173 if you

wish, or do what Stripe did and fund aggressive sprints towards

some high-impact milestones.

Consider this a formal call for sponsorship: Please help fund

urllib3 development.174

Stripe’s Open-Source Retreat can serve as a model for what a CSR

program could look like. Stripe decided to offer the program for a

second year in 2015. Despite the popularity of their program and its

172

https://stripe.com/blog/
stripe-open-source-retreat

173

Gittip is now called Gratipay.
The product has been
modified somewhat since
the original publication of
Andrey’s post.

174

https://stripe.com/blog/
stripe-open-source-retreat

1 1 7

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

warm reception by developers, this practice is still not common

among other companies.

Corporate interest in open source is growing rapidly, and nobody can

predict exactly what it might mean in the long term. Companies

could address the long term support gap by directing human re-

sources and money towards open source projects. There could be

formal fellowship programs to connect companies with open source

maintainers needing full-time support. Whereas a project’s contribu-

tors used to be a mix of developers from different places, perhaps

they will now be filled by a group of employees from a single

company. Digital infrastructure might come to exist in a series of

“walled gardens,” each well-supported and technically open, but

effectively championed by one company and its employees, by virtue

of that company’s limitless resources.

Taken to its extreme, however, this scenario doesn’t bode well for

innovation. Jeff Lindsay, a software architect who helped build the

platform team for Twilio, a highly successful cloud communications

company, mused in a podcast last year:

“Twilio is incentivized to make Twilio better, Amazon is incen-

tivized to make Amazon better. But who’s incentivized to make

them all work together better, and allow you to do more things

with them together? There’s nobody that’s really incentivized to

do that.175

Timothy Fitz, a systems engineer, further explained:

“Bruce Schneier described this sort of thing as serfdom. So, we’re

in a world where Google is a city-state, and Apple is a city-state,

175

Systems Live, Episode 51:
Megalith http://systemslive.
org/

1 1 8

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

and...if I just continue to use Google products, and I stay within

their walls, I get this great benefit. [But] living in a mixed world

is almost impossible, and very painful, and everything has bugs,

and no one of these companies really wants to support you. And

so we’re in this weird world where, and if you look at a city-state

world, one of the big problems was interstate commerce, if you

have a tariff because you’re trying to export something from

Austin and sell it to Dallas, that is not a good economy. You’re

going to suffer from a lack of innovation and a lack of idea

sharing. And that’s where we are right now.176 177

Although the “serfdom” argument mostly refers to a company’s

products, such as an iPhone versus an Android, it could also hold

true for sponsored open source projects. The first improvements to

be prioritized will be those that directly benefit a developer’s

employer. This observation is not malicious or conspiratorial, but

merely a constraint of being paid by a company to work on a project

that is not directly their business.

But nobody can control the origin of a successful open source

project, whether Google, the Linux Foundation, or an independent

group of developers. New and valuable projects can come from

anywhere, and when they provide a valuable service to other devel-

opers, they become popular. This is a good thing and fosters

innovation.

Dedicated foundation support
Two foundations recently stepped forward to focus more specifically

on supporting digital infrastructure: the Linux Foundation and the

Mozilla Foundation.

176

Systems Live, Episode 51: Mega-
lith http://systemslive.org/

177

http://www.wired.
com/2012/11/feudal-security/

1 1 9

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

Following Heartbleed, the Linux Foundation announced the forma-

tion of the Core Infrastructure Initiative (CII) in order to prevent a

similar situation from happening again. Jim Zemlin, the executive

director of the Linux Foundation, gathered nearly $4 million in

pledges from thirteen corporate donors, including Amazon Web

Services, IBM, and Microsoft, to support security-related infrastruc-

ture projects over the next three years.178 They are also building

government support, including support from the White House.179

The CII is officially a project of the Linux Foundation. Since its for-

mation in April 2014, the CII has sponsored development work on a

number of projects, including OpenSSL, NTP, GnuPG (a communica-

tion encryption system), and OpenSSH (a set of security-related

protocols). The CII primarily focuses on security-related projects as a

subset of infrastructure.

In October 2015, Mitchell Baker, chair of the Mozilla Foundation,

announced the Mozilla Open Source Support Program (MOSS),

pledging $1M to support free and open source software. According

to Baker, the program will consist of a “give back” element for

projects that Mozilla relies upon, and a “give forward” element to

support free and open source projects at large. However, the first set

of grants focused exclusively on the former. Mozilla identified nine

projects for its initial set of grants, crowdsourcing suggestions from

the community.180 They have also expressed interest in funding

security audits of critical open source projects.181

Finally, some foundations have made ad hoc contributions to soft-

ware-related projects. For example, the Python Software Foundation

makes small grants to organizations and individuals, mostly related

to outreach and education.182

178

http://www.cnet.com/news/
tech-titans-join-forces-to-
stop-the-next-heartbleed/

180

https://blog.mozilla.org/
blog/2015/10/23/mozil-
la-launches-open-source-sup-
port-program/

179

http://www.linuxfoundation.
org/news-media/blogs/
browse/2016/02/linux-foun-
dation-s-core-infrastruc-
ture-initiative-working-white

181

https://wiki.mozilla.org/
MOSS/Secure_Open_Source

182

https://www.python.org/psf/
records/board/resolutions/

1 2 0

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

Other institutional actors
There are several remaining actors who lend support to digital

infrastructure in various ways: GitHub, venture capital, and academia.

If Facebook is a “social utility”183 and Google is a “search utility”—

both de facto governing bodies in their respective fields—then

GitHub stands a chance to become the “open source utility.” Its

business model likely precludes it from ever becoming a similar

financial juggernaut (Facebook and Google both benefit greatly from

advertising models, whereas GitHub monetizes by hosting code for

enterprise clients, as well as charging individuals to host code

privately), but GitHub is still the place where today’s open source is

made and managed.

GitHub hinted at greater aspirations when it took $350M in venture

capital, despite already being profitable. If GitHub fully embraces its

role as a steward of open source, it could have enormous influence

on how those projects get supported. For example, it could create

better tools to manage open source projects, advocate for certain

types of licensing, or help project maintainers effectively manage

their communities.

GitHub has faced mounting pressure from project maintainers on

these topics, including a “Dear GitHub” open letter written and

signed by maintainers, many from the JavaScript community. The

letter explained, “Many of us are frustrated. Those of us who run some

of the most popular projects on GitHub feel completely ignored by you.”

It included a list of requests for product improvements that could

help them manage their projects more efficiently.184

183

http://techcrunch.
com/2013/09/18/facebook-
doesnt-want-to-be-cool/

184

https://github.com/dear-
github/dear-github

1 2 1

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

GitHub itself is struggling with growing pains that have been

well-documented in the media. Early on, the company became

famous for its flat hierarchy, with no managers or top-down assign-

ments. GitHub employees were given freedom to work on projects of

their own choosing.185 In recent years, as GitHub has grown to nearly

500 employees, the company has shifted its focus to the enterprise

side of its business, hiring sales teams and enterprise executives and

adopting a more traditional work hierarchy. The transition from a

decentralized to more centralized culture has been difficult for

GitHub: at least 10 executives left within a few months spanning the

winter of 2015-2016, including the VP engineering, CFO, strategy VP,

and human resources VP.186 Given these internal conflicts, GitHub

has yet to publicly signal that it will take an advocacy role and

provide leadership around open source’s more pressing infrastruc-

ture issues, but the potential is there.

Venture capital, as discussed, has a personal stake in the future of

digital infrastructure. Because developer tools help technology

companies build faster and smarter, the better the tools, the better

the startups, and the more venture capital thrives. However, “infra-

structure,” from a venture capitalist’s mindset, is not limited to open

source but rather focused on platforms that help other people

create. Therefore, investments in GitHub or npm, which are plat-

forms that help distribute open source code, make sense, but so do

investments like Slack, a workplace collaboration platform which

developers can use to create other “command”-driven apps. (To this

point, venture capitalists formed a $80M “Slack fund” to support

developer projects that use Slack.187) Even if venture capitalists

appreciate the underlying mechanics of infrastructure, they are

limited by their asset class: a VC could not make investments into a

project that didn’t have a business model.

185

http://www.fastcompany.
com/3020181/open-com-
pany/inside-githubs-super-
lean-management-strategy-
and-how-it-drives-innovation

186

http://www.businessinsider.
com/github-the-full-inside-
story-2016-2

187

http://fortune.
com/2015/12/15/slack-app-
investment-fund/

1 2 2

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

Finally, academic institutions have played a prominent historic role

in supporting digital infrastructure, especially the development of

new projects. For example, LLVM, a compiler project for C and C++

languages, started as a research project at the University of Illinois

at Urbana-Champaign. It is now used in Apple’s Mac OS X and iOS

development tools, as well as Sony’s PS4 development kit.

In another example, R, a popular programming language for statisti-

cal computing and data analysis, was initially written by Robert

Gentleman and Ross Ihaka at the University of Auckland.188 R is used

not just by software companies like Facebook or Google, but also by

Bank of America, the Food and Drug Administration, and the

National Weather Service, among others.189

Some universities also employ maintainers, who then have the

freedom to work on open source projects. For example, Network

Time Protocol, used to synchronize time on the Web, was first devel-

oped by David Mills, now an emeritus professor at the University of

Delaware. (The project continues to be maintained by a group of

volunteers, led by Harlan Stenn.) Bash, the aforementioned develop-

er tool, is currently maintained by Chet Ramey, who is employed by

the Information Technology Services division of Case Western

University.

Academic institutions have the potential to play an important role in

supporting newer projects, due to their endowment model and

mission alignment, but they can also lack the speed necessary to

appeal to modern open source developers. NumFOCUS is an

example of a 501(c)(3) foundation that supports open source scien-

tific software through fiscal sponsorship and donations.190 An

external foundation model could help provide the support that

188

https://www.r-project.org/
contributors.html

189

http://www.revolutionanalyt-
ics.com/companies-using-r

190

http://www.numfocus.org/
open-source-projects.html

1 2 3

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

I N S T I T U T I O N A L E F F O R T S T O S U p p O R T D I G I TA L I N F R A S T R U C T U R E

scientific software needs within the context of an academic environ-

ment. The Alfred P. Sloan Foundation and the Gordon and Betty

Moore Foundation are also experimenting with ways to connect

academic institutions with maintainers of data science software, in

order to facilitate an open and sustainable ecosystem.191
191

http://msdse.org/
themes/#tools

Opportunities Ahead

"There is a need for support for the

free public infrastructure....People

scream if their clocks are off by a

second. They say, ‘Yes, we need you,

but we can't give you any money.'"

 – Harlan Stenn, Network Time Protocol

1 2 5

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

D E v E L O p I N G E F F E C T I v E S U p p O R T S T R AT E G I E S

Developing effective support
strategies

Although there is growing interest in efforts to support digital

infrastructure, current initiatives are still new, ad hoc or provide only

partial support (such as fiscal sponsorship).

Developing effective support strategies requires a nuanced under-

standing of the open source culture that characterizes so much of

our digital infrastructure, as well as recognizing that much has

changed in the past five years, including the very definition of “open

source” itself.

Money alone will not fix a struggling infrastructure project, because

open source thrives on human rather than financial resources. There

are many ways to grow human resources, such as distributing the

workload among more contributors or encouraging companies to

make open source part of their employees’ work. An effective

support strategy must include multiple ways to generate time and

resources besides directly financing development. It must start from

the principle that the open source approach is not inherently flawed,

but rather under-resourced.

Supporting infrastructure requires embracing the concept of steward-

ship rather than control. As we’ve seen, digital infrastructure doesn’t

look like physical infrastructure. It is distributed across multiple

actors and organizations, with projects of many shapes and sizes, and

it is hard to predict which projects will be successful or who will

contribute to them in the long term. With this in mind, here are some

suggested design principles for effective support strategies:

1 2 6

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

D E v E L O p I N G E F F E C T I v E S U p p O R T S T R AT E G I E S

Embrace, rather than fight against, decentralization. Open source is
meant to be distributed; that’s part of what makes it so impactful.
Leverage the community-driven approach as a strength rather than
centralizing authority.

Work closely with existing software communities. Software communities
are active, tight-knit, and vocal. Treat them as an asset rather than
making decisions behind closed doors. Prominent community voices are
canaries in the coal mine when something needs attending to.

Consider a holistic approach to project support. Projects need more than
just code or money, and sometimes, they need neither. Long-term
support is more about creating time than it is about money. Code
reviews, technical documentation, code testing, community advocacy,
and evangelism are all important resources.

Help project maintainers plan ahead. Current efforts to support digital
infrastructure tend to be reactive and ad hoc. In addition to existing
projects, there may be new projects that need to be supported and built.
For existing projects, maintainers will benefit greatly from being able to
plan for the next three to five years, not just six months to a year.

Recognize opportunities, not just risks. Modern open source support is
not just about preventing worst-case scenarios (for example, security
breaches), but rather empowering more people to build more things.
This concept is a hallmark of today’s open source culture and also helps
build a legacy of support. Consider how you can include more people
from different backgrounds, skill sets, and abilities in your strategy,
rather than limiting work to benefitting existing participants.

David Heinemeier Hansson, the creator of Ruby on Rails, compared

open source to a coral reef:

“It's more sensitive than you think, and it's [hard] to underestimate

the beauty that's unwittingly at stake. Please tread with care.192 192

http://david.heinemeierhans-
son.com/2013/the-perils-of-
mixing-open-source-and-
money.html

1 2 7

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

p R I m I N G T H E L A N D S C A p E

Priming the landscape

It is too early to say what long-term institutional support should

look like from a programmatic perspective, but there are several

critical areas of work that would help us get there.

The following suggestions fall into three areas:

Treating digital infrastructure as a necessary public good and
elevating its importance to key stakeholders across sectors

Working with projects to improve standards, security, and workflows

Expanding the pool of contributors so that more people, and more types
of people, can build and sustain public software together

Building awareness and educating key
stakeholders

As discussed in this report, many key stakeholders—including those

from startups, government, and venture capital—mistakenly believe

that public software “just works” and does not require additional

support. In order to adequately support our digital infrastructure

ecosystem, these populations must first be made aware of the

problem. Digital infrastructure needs advocates, unhampered by

political or commercial constraints, who can understand and com-

municate the needs of digital infrastructure.

1 2 8

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

p R I m I N G T H E L A N D S C A p E

Treating digital infrastructure as a necessary public good could also

help direct investment into building better systems from scratch. For

example, in the United States, the interstate highway system and

the public library system were intentionally designed as public

resources. Both had champions (President Dwight Eisenhower and

philanthropist Andrew Carnegie, respectively), who built a case for

the social and financial benefit that would result from these projects.

A national highway system not only connected us as people, making

it easier to get from place to place, but brought financial prosperity

to all corners of the country, due to commercial use of highways to

transport goods. Andrew Carnegie’s free public libraries used an

“open stack” instead of a “closed stack” system, enabling people to

browse and find information themselves, instead of requesting it

from a librarian. This practice helped democratize information and

empower people to educate themselves.

Better education and awareness could also extend to governments,

some of which have made digital infrastructure legally difficult to

support, and who may not be as familiar with the cultural norms and

history of open source. In the United States, the IRS has narrow

definitions of what it considers to be charitable work, and because

open source is not well understood, its positive impact on society

goes unnoticed. This makes it difficult to institutionalize bigger

projects under a foundation or trade association.

Measuring the usage and impact of
digital infrastructure

The impact of digital infrastructure is still very difficult to measure.

Usage metrics are either highly inaccurate or simply unavailable.

This is not an easy problem to solve for. But without data about

1 2 9

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

p R I m I N G T H E L A N D S C A p E

which tools are used, and how much we rely upon them, it is hard to

paint a clear picture of what is underfunded.

With better metrics, we could describe the economic impact of

digital infrastructure, identify critical projects that are lacking

support, and understand dependencies between projects and people.

Right now, it is impossible to say who is using an open source

project unless that person or company discloses their usage. Our

information about which projects need better support is

mostly anecdotal.

Better metrics could also help us identify “keystone contributors” to

open source. In conservation biology, a “keystone species” is a

species of animal with a disproportionately large effect on its envi-

ronment relative to its abundance.193 Similarly, a “keystone contribu-

tor” might be a developer who contributes to multiple critical

projects, is singlehandedly responsible for a critical project, or is

generally perceived to be influential and trustworthy. Keystone

contributors are critical advocates; empowering them with the

resources they need could help improve the system as a whole.

Understanding the relationship between open source communities

and keystone contributors could help quickly identify areas that

require further support.

There is also little data about the contributors themselves: who

contributes to open source, what conditions allow them to do so,

and what types of contributions are made. Women, non-English

speakers, and new contributors to open source are examples of

demographics that should be tracked over time, especially to

measure the impact of support programs.

193

https://en.wikipedia.org/wiki/
Keystone_species

1 3 0

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

p R I m I N G T H E L A N D S C A p E

The only statistics available about GitHub repositories are the

number of people who have starred (similar to a “like” or “favorite”),

watched (meaning they receive updates about the project) or forked

a project. These numbers help provide some metrics for relative

popularity, but can also be misleading. Plenty of people could star a

project, for example, because it is conceptually interesting, but not

actually use it in their code.

Some package managers like npm (which is used for Node.js) track

downloads. Debian Popularity Contest tracks downloads of packages

related to the free operating system Debian. Each package manager

is limited to a particular ecosystem, however, and no one package

manager can paint a picture of the system at large. Many projects are

not part of a package manager and go untracked. Libraries.io, a

website created by Andrew Nesbitt, is one effort to aggregate data

open source projects and provide more data around their usage; it

tracks over 1.3M open source libraries across 32 package

managers.194

Working with projects to
modernize workflows

Many projects struggle not just due to lack of funding, but because

the projects are difficult to contribute to, or suffer a bottleneck

from maintainers, who meticulously review and accept pull requests

from the community. This is particularly true for older projects

which may have been built using developer tools, languages, or

workflows that are no longer popular (for example, using an older

version control system instead of Git, whose popularity is growing

among developers).

194

https://libraries.io/

1 3 1

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

p R I m I N G T H E L A N D S C A p E

There is plenty of work that can be done to make projects easier to

contribute to, including migrating them to newer workflows,

cleaning up code, closing unattended pull requests, and setting clear

policies for contribution.

Some projects have experimented with making it easier to contrib-

ute. For example, developer Felix Geisendörfer has suggested that

everybody who submits a change to code should be given commit

access, in order to reduce the bottleneck of a single maintainer

reviewing and approving those changes. Felix found that “this

approach is a fantastic way to keep projects from going stale as well as

turning one-man projects into small communities.” 195

The Node.js contribution policy, which is made available for other

Node projects to adopt, emphasizes growing the number of contrib-

utors and empowering them to make their own decisions, instead of

treating maintainers as the final approving authority. Their contribu-

tion policy details how to submit and accept pull requests and how

to log bugs and other issues. The Node.js maintainers found that

adopting better policies helped them manage their workload and

grow their community into a healthier, active project.196

There is research to be done that addresses what projects should

strive towards in the first place. That is, what does a “successful”

project look like, in terms of financial support and governance

models, as well as balancing the right mix of maintainers, contribu-

tors, and users? The answer may vary for different types or sizes

of projects.

196

https://medium.com/
the-javascript-collection/
healthy-open-source-
967fa8be7951#.4x37jao9w

195

http://felixge.de/2013/03/11/
the-pull-request-hack.html

1 3 2

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

p R I m I N G T H E L A N D S C A p E

Encouraging standards across open
source projects

Although GitHub is becoming a standard platform for code collabo-

ration, many aspects of an open source project are still not standard-

ized, including the breadth and depth of documentation, licenses,

and contributing guides, as well as code style and formatting.

Encouraging the adoption of project standards can make it easier for

maintainers to manage contributions, as well as lowering a contribu-

tor’s barrier to participation.

One example of a growing standard is a code of conduct, which is a

policy detailing expectations for behavior and communication.

Codes of conduct are being adopted among many project communi-

ties in recent years, including Node.js, Django, and Ruby. Although

the process of adoption has been hotly debated among some com-

munities, their proliferation suggests a rising interest in holding

communities accountable for their behavior.

Expanding the pool of open
source contributors

As discussed earlier in this report, software is a booming industry,

with growing numbers of just new developers but other skilled

talent, and there is work to be done to encourage newcomers to

contribute to open source. Expanding the pool of contributors helps

open source projects become more resilient, because more people

are participating in their development. Helping more people contrib-

ute to open source also increases empathy and communication

between open source “users” and the projects they depend on.

1 3 3

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

p R I m I N G T H E L A N D S C A p E

Your First PR is an example of an initiative, developed by program-

mer Charlotte Spencer, that helps newcomers make their first contri-

bution to open source.197 First Timers Only198 and Make a Pull

Request199 are two other popular examples of resources that intro-

duce newcomers to open source. Some open source projects also

use tags such as “first bug” or “contributor friendly” to flag issues

that are suitable for less experienced contributors to tackle. It would

also be valuable to encourage contributions to open source beyond

code, such as writing technical documentation, managing tasks and

workflows, or creating a website for a project.

In addition to increasing the percentage of technical talent that

contributes to open source, there is an opportunity to draw from a

wider pool of contributors. Making non-English speakers feel

welcomed in open source communities, for example, can help make

technology more accessible around the world. And because many

recruiters use open source work as a portfolio when hiring develop-

ers, a more diverse open source community can help build a more

inclusive tech talent field overall.

Improving relationships between projects and
external stakeholders

Companies are an inevitable part of the open source ecosystem, and

their role is only increasing in importance as more companies

embrace open source software. Making it easier for companies and

projects to work with one another, as well as helping companies

understand the needs of project communities, can unlock companies

as patrons of, and advocates for, open source.

According to the annual Black Duck open source company survey,

198

http://www.firsttimersonly.com/

199

http://makeapullrequest.com/

197

https://twitter.com/yourfirstpr

1 3 4

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

p R I m I N G T H E L A N D S C A p E

only 27% of companies have a formal policy for employee contribu-

tions to open source.200 Clarifying whether and how employees may

contribute back to open source on company time, and encouraging

them to do so, could go a long way in improving corporate support

for open source projects.

In 2014, a group of companies formed the TODO Group, to share

best practices around corporate participation in open source.

Members include Box, Facebook, Dropbox, Twitter, and Stripe.201 In

March 2016, the TODO Group announced it would be housed by the

Linux Foundation as a collaborative project.202

Companies can also provide financial support for projects, but some-

times find it difficult to figure out how to structure their sponsorship.

Creating sponsorship budgets for engineering departments or em-

ployees, or creating documents to make it easy for projects to

“invoice” companies, could increase financial contributions to

open source.

Poul-Henning Kamp, for example, works on an open source project

called Varnish, used by one-tenth of the top websites on the

Internet, including Facebook, Twitter, Tumblr, The New York Times,

and The Guardian.203 To fund his work, he created the Varnish Moral

License to make it easy for companies to sponsor the project.

Although in practice the relationship is a sponsorship, Poul-Henning

uses terminology that companies are familiar with, such as “invoices”

and “licenses,” to reduce barriers to participation.204

201

http://todogroup.org/

202

http://todogroup.org/blog/
todo-becomes-lf-collabora-
tive-project/

203

https://en.wikipedia.org/wiki/
Varnish_(software)

204

http://phk.freebsd.dk/VML/

200

https://www.blackducksoft-
ware.com/news/releases/
seventy-eight-percent-com-
panies-run-open-source-yet-
many-lack-formal-policies-
manage

1 3 5

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

p R I m I N G T H E L A N D S C A p E

Increasing support of diverse skill sets and
non-coding functions
In the not-too-distant past, software startups were once heavily

weighted towards engineering talent. Other functions, like market-

ing or design, were considered secondary to code.

With the rapid creation and consumerization of software today, that

view no longer holds. Startups need to compete for their customers’

attention. Brand has become one of the most important

differentiators.

The last five years have seen the rise of the “full stack engineer”:

developers who are more generalists than specialists, able to work

on different layers of software complexity, and who might even

have some proficiency with design or product. Software teams

collaborate more closely, using agile software development ap-

proaches (where the product is built through frequent iteration

between engineering, design, product, and marketing teams) rather

than waterfall approaches (where each team completes their piece

of the product before handing it to the next team).

Open source software has seen very few of these changes, despite

our increasing reliance on these projects. Understandably, code is

central to an open source project, since in some ways it is the

“product” or output. Less valued are functions such as community,

documentation, or evangelism, that are the mark of any healthy,

sustainable organization. As a result, projects become imbalanced.

There is plenty of work that could be done to fund and support

non-code contributions, in-kind donations (such as paying for

servers), and benefits (such as health insurance). Having this type of

support could go a long way in easing the burden on maintainers.

1 3 6

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E C R O S S R O A D S w E FA C E

The crossroads we face

The current state of our digital infrastructure is one of the most

poorly understood issues of our time. It is critical that we un-

derstand it.

By making a voluntary investment in our underlying infrastructure,

developers made it easier for others to build software. By giving it

away for free instead of charging for it, they fueled an information

revolution.

Developers did not do this for altruistic reasons. They did it because

it was the best way to solve their own problems. The story of open

source software is one of the great modern day triumphs of the

public good.

We are lucky that developers have borne the hidden cost of these

investments. But their initial investments only get us so far.

We are merely at the beginning of the story of how software trans-

formed humanity. Marc Andreessen, the co-founder of Netscape and

well-known venture capitalist behind the firm Andreessen Horowitz,

observed in 2011 that “software is eating the world.” 205 Since then,

that statement that has become canon for the modern age.

Software affects everything we do: not just the frivolous and enter-

taining, but the mandatory and critical. OpenSSL, the project de-

scribed at the beginning of this paper, demonstrates this well. In a

phone interview, Steve Marquess explained that OpenSSL was used

not just by consumer websites, but by the government, drones,

satellites, “any gadget you hear in the hospital beeping.” 206

205

http://www.wsj.com/articles/
SB10001424053111903480904
576512250915629460

206

Phone interview with Steve
Marquess

1 3 7

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E C R O S S R O A D S w E FA C E

The Network Time Protocol, maintained by Harlan Stenn, synchroniz-

es the clocks used by billions of networked devices and affects

everything with a timestamp: not just messaging apps or email, but

financial markets, medical records, and chemical processing.

And yet, Harlan observes:

“There is a need for support for the free public infrastructure.

But there's just no revenue stream around time right now.

People scream if their clocks are off by a second. They say, ‘Yes,

we need you, but we can't give you any money.' 207

In the last five years, open source infrastructure has become an

essential layer of our social fabric. But much like startups or tech-

nology itself, what worked for the first 30 years of open source’s

history won’t work moving forward. In order to maintain our pace of

progress, we need to invest back into the tools that help us build

bigger and better things.

Figuring out how to support digital infrastructure may seem

daunting, but there are plenty of reasons to see the road ahead as

an opportunity.

Firstly, the infrastructure is already there, with clearly demonstrated

present value. This report does not propose to invest in an idea with

unknown future value. The enormous social contributions of today’s

digital infrastructure cannot be ignored or argued away, as has

happened with other, equally important debates about data and

privacy, net neutrality, or private versus public interests. This makes

it easier to shift the conversation to solutions.

207

http://www.informationweek.
com/it-life/ntps-fate-hing-
es-on-father-time/d/d-
id/1319432

1 3 8

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

T H E C R O S S R O A D S w E FA C E

Secondly, there are already engaged, thriving open source communi-

ties to work with. Many developers identify with the programming

language they use (such as Python or JavaScript), the function they

provide (such as data science or devops), or a prominent project

(such as Node.js or Rails). These are strong, vocal, and enthusiastic

communities.

The builders of our digital infrastructure are connected to each other,

aware of their needs, and technically talented. They already built our

city; we just need to help keep the lights on so they can continue

doing what they do best.

Infrastructure, whether physical or digital, is not easy to understand,

and its effects are not always visible, but this should compel us to

look more, not less, closely. When a community has spoken so

vocally and so often about its needs, all we need to do is listen.

Appendix

1 4 0

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

A p p E N D I x

Code repository: The location of source

code needed to use a software project.

For example, GitHub offers a place to host

one’s repository so that other people can

find and use it. Also colloquially called a

“repo.” The collection of source code files

themselves are called the “codebase.”

Contributor (open source): Someone

who has made a contribution to a live

open source project. Examples of con-

tributions include writing code, docu-

mentation, or managing support issues.

A contributor may not have commit

access to a project (i.e. someone else

must approve their contributions before

they are live).
Digital infrastructure: For the purposes

of this report, digital infrastructure refers

to public software components that are

used to build software for personal or

commercial use. Examples include pro-

gramming languages and databases.

This definition does not include physical

infrastructure needed to build software

(e.g., physical servers or cables).

Documentation (software): Written in-

formation that explains how people can

use or contribute back to a software

project. Documentation is like an in-

struction manual for software. Without

it, a developer wouldn’t know how to use

the project.

FOSS, FLOSS, OSS: FOSS is an acronym

that means Free and Open Source

Software. It is meant to be inclusive of

both terms that refer to public software.

FLOSS refers to Free, Libre, and Open

Source Software and is arguably the

most inclusive definition. (The Spanish

word libre—“free” as in freedom—is used

to distinguish from gratis - “free” as in

cost—in order to highlight that “free

software” refers to the former.) OSS

refers to Open Source Software only.

Fork: There are two types of forks. A

project fork is the historical definition of

a fork, in which someone makes a copy

of an open source project and continues

to develop it separately. It is used politi-

cally; for example, when there is internal

disagreement about the project’s direc-

tion, or to force substantial changes to

the original project (ideally, merging

the fork back into the main project). A

GitHub fork refers to temporarily copying

a project to make changes, usually with

the intent of merging those changes

back into the main project. It does not

carry the political and social weight of a

project fork. GitHub repurposed this term

to encourage a culture of lightweight

“tinkering” that is now prevalent among

modern open source contributors.

Glossary

Free software: Software that is free

to run for any purpose (commercial or

non-commercial) as well as be studied,

changed, and distributed. The term

originated around 1983 from the work

of computer scientist Richard Stallman,

the GNU Project, and Free Software

Foundation (founded 1985).

1 4 1

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

A p p E N D I x

Programming language: Programming

languages are the communication

backbone of software. They help dif-

ferent software components perform

actions and talk to one another.

Popular examples of languages include

JavaScript, Python and C.

GitHub: A commercial platform for

hosting code. GitHub launched in

2008 and is currently the most popular

platform for people to host and collab-

orate on open source projects. (One can

also host private code on GitHub.) GitHub

helped standardize open source devel-

opment practices and bring open source

to a wider audience. Projects on GitHub

use the version control system Git.

Maintainer (open source): Someone

who assumes the responsibility of

an open source project. The defini-

tion varies from project to project.

Sometimes maintainers are formally

named in a project, and sometimes

they emerge de facto based on who is

doing the bulk of the work. A maintain-

er likely carries the burden of holistic

project management more than any

individual contributor. They may or may

not have authored the original version

of the project. They will likely have

commit access to a project (i.e. can

make changes directly to the project).

Open source software: Open source

software has the same technical defi-

nition as free software (see above).

However, culturally, open source tends

to highlight the pragmatic benefits of

public software, whereas free software

is a social movement. The term “open

source” originated from a 1998 meeting

of parties interested in exploring a cor-

porate friendly alternative to the term

“free software.”

Software framework: Software frame-

works provide basic scaffolding for an

application. Think of it as a blueprint.

Like a blueprint, a framework lays out

how the application might look on

mobile, or how information gets saved

into the database. Examples include

Rails and Django.

Software library: Software libraries

are “prefabricated” pieces of code that

make it faster to write software, just as

a construction company might buy pre-

fabricated windows instead of building

them from scratch. For example, instead

of a developer writing their own user

login system for an application, they

can use a library called OAuth.
Source code: For the purposes of this

report, source code is the actual code

associated with an open source project. Venture capital: A type of private equity

that provides money to early-stage,

high-growth companies in exchange

for equity. Venture capital helped

grow many commercial aspects of the

Internet and gave rise to Silicon Valley.

1 4 2

R O A D S A N D B R I D G E S : T H E U N S E E N L A B O R B E H I N D O U R D I G I TA L I N F R A S T R U C T U R E

A p p E N D I x

Acknowledgements

Thanks to everybody who bravely agreed to be cited in this report,

as well as to those whose frank and thoughtful perspectives helped

round out my thoughts during the research process: André Arko,

Brian Behlendorf, Adam Benayoun, Juan Benet, Cory Benfield, Kris

Borchers, John Edgar, Maciej Fijalkowski, Karl Fogel, Brian Ford, Sue

Graves, Eric Holscher, Brandon Keepers, Russell Keith-Magee, Kyle

Kemp, Jan Lehnardt, Jessica Lord, Steve Marquess, Karissa McKelvey,

Heather Meeker, Philip Neustrom, Max Ogden, Arash Payan, Stormy

Peters, Andrey Petrov, Peter Rabbitson, Mikeal Rogers, Hynek

Schlawack, Boaz Sender, Quinn Slack, Chris Soghoian, Charlotte

Spencer, Harlan Stenn, Diane Tate, Max Veytsman, Christopher Allan

Webber, Chad Whitacre, Meredith Whittaker, Doug Wilson.

Thanks to everybody who wrote something public that was ref-

erenced in this paper. This was a critical part of the research, and

I am thankful to those who make their ideas public so others can

learn from them.

Thanks to Franz Nicolay for copy editing and Brave UX for the design

of this report.

Finally, a very special thanks to Jenny Toomey and Michael Brennan

for driving this project with patience and enthusiasm, to Lori

McGlinchey and Freedman Consulting for their early feedback, and to

Ethan Zuckerman for making the magic happen.

S p O N S O R E D B y

	Foreword
	Executive Summary
	History and Background of Digital Infrastructure
	How software gets built
	How not charging for software transformed society
	A brief history of free and public software and the people who made It
	What is digital infrastructure, and how does it get built?
	How are digital infrastructure projects managed and supported?
	Why do people keep contributing to these projects, when they’re not getting paid for it?
	Open source’s complicated relationship with money
	Why digital infrastructure support problems are accelerating
	The hidden costs of ignoring infrastructure
	Business models for digital infrastructure
	Finding a sponsor or donor for an infrastructure project
	Why is it so hard to fund
these projects?
	Institutional efforts to support digital infrastructure
	Developing effective support strategies
	Priming the landscape
	The crossroads we face
	Acknowledgements

