Roads
and Brid

The Unseen Labor Behind
Our Digital Infrastructure

ges:

WRITTEN BY

Nadia Eghbal

Open up your phone.
Your social media,
your news, your
medical records, your
bank: they are all using
free and public code.

CONTENTS

Table of Contents

11

18

19
23

29

37
38

46

53

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

Preface
Foreword
Executive Summary

Introduction

History and Background of
Digital Infrastructure

How software gets built

How not charging for software
transformed society

A brief history of free and public software
and the people who made it

How The Current System Works

What is digital infrastructure,and how
does it get built?

How are digital infrastructure projects
managed and supported?

Why do people keep contributing to
these projects, when they're not

getting paid for it?

58
59

66

77

89
90

97

106
109

124
125
127
136

139

140
142

Challenges Facing Digital Infrastructure

Open source’s complicated
relationship with money

Why digital infrastructure support
problems are accelerating

The hidden costs of ignoring infrastructure

Sustaining Digital Infrastructure
Business models for digital infrastructure

Finding a sponsor or donor for
an infrastructure project

Why is it so hard to fund these projects?

Institutional efforts to support digital infrastructure

Opportunities Ahead
Developing effective support strategies
Priming the landscape

The crossroads we face

Appendix
Glossary

Acknowledgements

Preface

Our modern society—everything

from hospitals to stock markets to
newspapers to social media—runs on
software. But take a closer look, and
you'll find that the tools we use to build

software are buckling under demand.

FOREWORD

Foreword

| stumbled upon the problem described in this report on a hunch.
Having previously worked in startups, and then venture capital, |
saw the enormous amounts of money being poured into software
companies. But as an amateur software developer, | knew that | had
never done any of it alone. | used free and publicly available code
(also known as “open source” code), which | cobbled together and
offered up for personal or commercial purposes. Really, the people
behind those projects, whoever they were, had done most

of the work.

| mulled over this observation for several years, as | watched the
explosion of coding “bootcamps” graduating new software develop-
ers left and right, and as | watched startups raise tens of millions of
dollars selling products which | knew, under the hood, were
probably more public than proprietary code. Having previously
worked in the nonprofit sector, | immediately thought of public
goods and their associated challenges, yet this vocabulary was

strangely absent among my peers in software.

After | left my job in venture capital last year, | set off to explore the
paradox | couldn’t stop thinking about: that there were valuable
software tools that couldn’t be supported by commercial models,

and that they lacked any form of institutional support.

Funnily enough, open source code wasn’t on my original list. | had
mistakenly assumed, as had my peers, that these tools were an
example of a particularly well-supported public good in software.
When | brought up open source to friends and mentors, they gently

dissuaded me from pursuing the topic, encouraging me instead to

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

FOREWORD

find other examples that actually needed the help.

A few open source projects crossed my radar, however, and shat-
tered those assumptions. It turned out that sustainability challeng-
es were well-known among those who contributed to open source.
The more | dug, the more | found blog posts, articles, and frequent
public conversations about the stress and exhaustion felt by those
who maintain open source projects. Everybody knew someone else
| should talk to, and before | knew it, | had collected countless

stories on this topic.

| realized | had walked into a problem with which the producers
(open source contributors) were extremely familiar, but that the
consumers (software companies and other users of open source
code) were seemingly unaware of. That discrepancy made me want

to look more closely.

In addition, it seemed that open source itself was changing, perhaps
even bifurcating. | found myself having completely different conver-
sations with different generations of open source contributors. They
seemed to have divergent philosophies and values; they may as well
not have been using the same terminology. | learned that open
source had seen an explosion of production as well as demand in the
past three to five years, thanks to improvements in developer tools
and workflows. Today’s open source contributor looked very different
from an open source contributor ten years ago, much less thirty years
ago. And yet these different generations weren’t talking to each

other, making productive conversations about sustainability difficult.

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

FOREWORD

A chance conversation with Ethan Zuckerman of the MIT
Center for Civic Media gave me an opportunity to share these

findings more widely.

| described to Ethan the problem | was seeing, though | didn’t know
exactly what it all meant or the vocabulary | should be using, and he
kindly put me in touch with Jenny Toomey of the Ford Foundation.
Jenny suggested | aggregate my findings into a report. In the process,
a narrative around our modern digital society, and the hidden infra-

structure that powers it, has emerged.

This report would not have happened without Ethan and Jenny
taking a chance on a half-baked idea that now, through the process
of writing, has been shaped into something more. | am extremely
grateful to both of them for their intuition. | am additionally grateful
to Michael Brennan and Lori McGlinchey for their guidance, perspec-
tive and enthusiasm in the editing process. Finally, and perhaps most
importantly, | am indebted to every person working in open source
who made their stories public for people like me to read, and espe-
cially those who took a moment out of their busy schedules to
humor me with a conversation or an email. This report is a collec-
tion of their wisdom, not mine. | am particularly grateful for early
conversations with Russell Keith-Magee, Eric Holscher, Jan Lehnardt,
Andrey Petrov, and Mikeal Rogers, all of whom continue to inspire
me with their patience and dedication to open source work. Thank

you for your kindness.

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

EXECUTIVE SUMMARY

Executive Summary

Our modern society—everything from hospitals to stock markets
to newspapers to social media—runs on software. But take a closer
look, and you’ll find that the tools we use to build software are

buckling under demand.

Nearly all software today relies on free, public code (called “open
source” code), written and maintained by communities of developers
and other talent. Much like roads or bridges, which anyone can walk
or drive on, open source code can be used by anyone—from compa-
nies to individuals—to build software. This type of code makes up

the digital infrastructure of our society today.

Just like physical infrastructure, digital infrastructure needs

regular upkeep and maintenance. In the United States, over half

of government spending on transportation and water infrastruc-

ture goes just to maintenance.! But financial support for digital .
infrastructure is much harder to come by. Currently, any financial r“,‘u‘ﬁﬁ’c’;“m?;‘}f‘”’
support usually comes through sponsorships, direct or indirect, from

software companies.

Maintaining open source code used to be more manageable.
Following the personal computer revolution of the early 1980s, most
commercial software was proprietary, not shared. Software tools
were built and used internally by companies, and their products
were licensed to customers. Many companies felt that open source
code was too nascent and unreliable for commercial use. In their

view, software was meant to be charged for, not given away for free.

Today, everybody uses open source code, including Fortune 500

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

EXECUTIVE SUMMARY

companies, government, major software companies and startups.
Sharing, rather than building proprietary code, turned out to be
cheaper, easier, and more efficient. This increased demand puts addi-
tional strain on those who maintain this infrastructure, yet because
these communities are not highly visible, the rest of the world has
been slow to notice. Most of us take opening a software application
for granted, the way we take turning on the lights for granted. We

don’t think about the human capital necessary to make that happen.

In the face of unprecedented demand, the costs of not supporting
our digital infrastructure are numerous. On the risk side, there are
security breaches and interruptions in service, due to infrastructure
maintainers not being able to provide adequate support. On the
opportunity side, we need to maintain and improve these software
tools in order to support today’s startup renaissance, which relies
heavily on this infrastructure. Additionally, open source work builds
developers’ portfolios and helps them get hired, but the talent pool
is remarkably less diverse than in tech overall. Expanding the pool
of contributors can positively affect who participates in the tech

industry at large.

No individual company or organization is incentivized to address the
problem alone, because open source code is a public good. In order
to support our digital infrastructure, we must find ways to work
together. Current examples of efforts to support digital infrastruc-
ture include the Linux Foundation’s Core Infrastructure Initiative and
Mozilla’s Open Source Support (MOSS) program, as well as numerous

software companies in various capacities.

Sustaining our digital infrastructure is a new topic for many, and

the challenges are not well understood. In addition, infrastructure

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

EXECUTIVE SUMMARY

projects are distributed across many people and organizations,
defying common governance models. Many infrastructure projects
have no legal entity at all. Any support strategy needs to accept and
work with the decentralized, community-centric qualities of open
source code. Increasing awareness of the problem, making it easier
for institutions to contribute time and money, expanding the pool of
open source contributors, and developing best practices and policies
across infrastructure projects will all go a long way in building a

healthy and sustainable ecosystem.

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

INTRODUCTION

Introduction

In 1998, a group of security experts in the UK got together to build a
free set of encryption tools for the Internet.

Soon everybody was talking about their project, called OpenSSL.
(The developers had used an existing Australian project, called
SSLeay, as their blueprint.) Not only was it comprehensive and
decently reliable, but it was free. Writing cryptography wasn’t easy,
and OpenSSL had solved a major pain point for develop-

ers worldwide.

By 2014, two-thirds of all Web servers were using OpenSSL, enabling
websites to securely pass credit card and other sensitive information

2
over the Internet.’ -

http://news.netcraft.com/
archives/2014/04/08/
half-a-million-widely-trust-
ed-websites-vulnerable-to-

Meanwhile, the project continued to be informally managed by a heartbleed-bughtml
small handful of volunteers. A security consultant to the U.S.

Department of Defense, Steve Marquess, noticed that one contribu-

tor, Stephen Henson, was working full time on OpenSSL. Curious,

Marquess asked him what he did for income, and was shocked to

learn that Henson made one-fifth of Marquess’s salary.

Marquess had always considered himself to be a strong programmer,
but his skills paled in comparison to Henson’s. Like others, Marquess
had mistakenly assumed that someone as talented as Henson would

have a comfortable salary to match.
Henson had been working on OpenSSL since 1998. Marquess was

newer to the project, joining in the early 2000s, and had worked

with Henson for several years before learning of his income situation.

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

INTRODUCTION 12

Having worked with the Department of Defense, Marquess saw how
critical OpenSSL was, not just to their software, but to other indus-
tries around the world, from enterprise to aeronautics to health care.
Until that moment, he had “always assumed, (as had the rest of the

world) that the OpenSSL team was large, active, and well resourced.® In 3

Email interview with

reality, OpenSSL wasn’t even able to support one person’s work. Steve Marquess

Marquess decided he wanted to help. Although he contributed code
occasionally, he realized he could fill a more critical role on the
business side. Marquess started out by arranging small consulting
contracts through an existing nonprofit to help keep OpenSSL alive

in its leanest years.

As the volume of contracts grew, Marquess created the OpenSSL
Software Foundation (OSF) to provide an official vehicle for revenue.
Despite the number of individuals and companies relying on their
software, OSF never received more than $2,000 in donations per
year. Gross revenues (which came from consulting and contract
work) never broke $1M, and much of that went toward security-re-
lated testing (which could cost hundreds of thousands of dollars)

and server costs.

There was enough to pay the salary of one developer, Stephen
Henson. That meant that two-thirds of the Web relied on encryption

software maintained by just one full-time employee.

The OpenSSL team continued to work in relative obscurity until April
2014, when a Google engineer named Neel Mehta stumbled upon a
major flaw in OpenSSL’s software. Two days later, another engineer
at the Finnish company Codenomicon discovered the same problem.
Both of them immediately contacted the OpenSSL team.

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

INTRODUCTION

That bug, nicknamed Heartbleed, had been included in a 2011
update. It had gone unnoticed for years. Heartbleed could allow any
sophisticated hacker to capture secure information being passed to
vulnerable web servers, including passwords, credit card information,

and other sensitive data.

Joseph Steinberg, a cybersecurity columnist for Forbes, wrote that
“some might argue that [Heartbleed] is the worst vulnerability

found...since commercial traffic began to flow on the Internet.” *

Thanks to wide media reporting, much of the nontechnical world
became familiar with the security bug, at least by name. Major
services like Instagram, Gmail and Netflix were affected by
Heartbleed.” Reporters also drew attention to OpenSSL itself, and
how its team had struggled for years to support their work. OpenSSL
was a known concern among security experts, but the team did not

have adequate resources or attention to address the issues.

Of Heartbleed, Marquess wrote, “The mystery is not that a few over-
worked volunteers missed this bug; the mystery is why it hasn’t

happened more often.”

People expressed their support by sending donations to the founda-
tion. Although Marquess was grateful for their enthusiasm, the first
round of donations came out to roughly $9,000: not nearly enough

to sustain a team.

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

4

http://www.forbes.
com/sites/joseph-
steinberg/2014/04/10/
massive-internet-security-
vulnerability-you-are-at-
risk-what-you-need-to-do/

5
http://mashable.
com/2014/04/09/heart-

bleed-bug-websites-affect-

ed/#01gtseEchaga

13

INTRODUCTION

Marquess took to the Internet to make an impassioned public plea

for funding:

These guys don’t work on OpenSSL for money. They don't do it
for fame (who outside of geek circles ever heard of them or
OpenSSL until ‘heartbleed’ [sic] hit the news?). They do it out of
pride in craftsmanship and the responsibility for something

they believe in.

It takes nerves of steel to work for many years on hundreds of
thousands of lines of very complex code, with every line of code
you touch visible to the world, knowing that code is used by
banks, firewalls, weapons systems, web sites, smart phones,
industry, government, everywhere. Knowing that you’ll be

ignored and unappreciated until something goes wrong.

There should be at least a half dozen full time OpenSSL team
members, not just one, able to concentrate on the care and
feeding of OpenSSL without having to hustle commercial
work. If you're a corporate or government decision maker in a
position to do something about it, give it some thought. Please.

I'm getting old and weary and Id like to retire someday. ® 6

http://veridicalsystems.
com/blog/of-money-re-

sponsibility-and-pride/

After Heartbleed, OpenSSL finally got more of the funding it
needed—at least for now. They currently have enough money to pay
four full-time employees for three years. But a year and a half into

that funding, Marquess isn’t sure what will come next.
Marquess said that Heartbleed was a boon for them, admitting it

was a “little ironic” that publicity had helped elevate their cause. But

after funding runs out and the world moves on, Marquess thinks

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

INTRODUCTION 15

they could be back in the same situation as pre-Heartbleed, and
perhaps even worse: the client work that took Marquess years to
build has dried up, since the team works full-time on OpenSSL right

. 7
now and no longer has time for contracts.’ -

Phone interview with Steve
Marquess

Marquess himself is approaching retirement. He is the only person
willing to handle the business and operational tasks associated with
OpenSSL, including taxes, sourcing client work, and managing
donors. The rest of his team prefers to focus on writing and main-
taining code. He can’t hire someone else into his position when he
retires, either, because he currently doesn’t take an income.
Marquess remarked, “/ don’t know that we can hold this together for

”» 8
more than a couple of years”. -

Email interview with Steve
Marquess

OpenSSLs story is not unique, and in many ways, Marquess thinks
they are the lucky ones. Countless other projects continue to go
unheard of and unsupported. These projects make up the critical
digital infrastructure that powers today’s software, and in turn, every

aspect of our daily lives.

Checking email, reading the news, checking stock prices, shopping
online, going to the doctor, calling customer service—whether we

realize it or not, everything we do is made possible by projects like
OpenSSL. Without them, the technology that modern society relies

upon simply could not function.
Many of these projects are built and maintained by volunteers and
offered to the public for free. Anyone, from Facebook to an amateur

programmer, can use that code to build their own apps. And they do.

If it sounds unbelievable that, as Marquess puts it, a “ragtag group of

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

INTRODUCTION

amateurs could outcompete huge corporations with their money and

»9

resources,” > consider how this work reflects the rise of peer-to-peer

collaboration around the world.

Unlikely startups like Uber or AirBnB exploded into major corporate
powerhouses in just a few years, challenging longstanding industries
like transportation and hospitality. Musicians make a name for
themselves through YouTube or Soundcloud instead of big record
labels. Creative people fund their ideas through crowdfunding

platforms like Kickstarter or Patreon.

Similarly, these infrastructure projects sprang from passionate,
creative developers who thought “/ could do this better,” collaborat-
ing to build and release code to the world. The difference is that

millions of people rely on this code to lead functional daily lives.

Because code is less charismatic than a hit YouTube video or
Kickstarter campaign, there is little public awareness of and appreci-
ation for this work. As a result, there is not nearly enough institu-
tional support for the output that sparked an information revolution.

But we can’t ignore it for much longer.

In the past five years, our reliance on software, and the free and
public code that supports it, has accelerated. Technology has worked
its way into every aspect of our lives. And the more people use
software, the more software gets built, and the more work is

required to maintain it all.
Every successful startup needs public infrastructure to succeed, yet

no one company is motivated to act on its own. As the world blazes

ahead into a modern age of startups, code and technology,

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

9

Phone interview with Steve
Marquess

INTRODUCTION

infrastructure continues to lag behind. The cracks in the foundation
are not obvious right now, but they are widening. After years of
unprecedented growth that propelled us into a new era of wealth
and prosperity, we must act now in order to ensure that the world
we built in such a short period of time does not come unexpectedly

crashing down.

To understand how to protect our future, first we need to understand

software itself.

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

History and Background
of Digital Infrastructure

"Open source became a movement —

a mentality. Suddenly infrastructure

software was nearly free."

— Mark Suster, Upfront Ventures

HOW SOFTWARE GETS BUILT

How software gets built

Every website or mobile app we use, no matter how simple, is made
up of many smaller components, just as a building is made up of

bricks and concrete.

For example, imagine you want to post a photo to Facebook. You
open your Facebook mobile app, which triggers Facebook’s software

to show your news feed.

You upload a photo from your phone, add a comment, then hit
“submit.” Another part of Facebook’s software, responsible for storing

data, remembers who you are and posts the photo to your profile.

Finally, a third part of Facebook’s software takes the information
that you typed into your phone and shows it to all your friends

around the world.

Although these interactions take place on Facebook, Facebook did
not actually build all the pieces necessary to make it possible for
you to post to their app. Instead, they use free, public code, made
available on the Internet by volunteers for anybody to use. Facebook
does not publicly list the projects they use, but another company
they own, Instagram, lists and thanks some of these projects on

their homepage and mobile app.°

Using public code is more efficient for a company like Facebook than
building every piece themselves. Building software is like construct-
ing a building. A construction company wouldn’t build its hammers
and drills from scratch, or source and chop all of the lumber them-

selves. Instead, it buys the tools from a hardware store, and the

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

10
https://instagram.com/
about/legal/libraries/

HOW SOFTWARE GETS BUILT

lumber from a third-party supplier, to make the job go faster.

Thanks to permissive licenses, companies like Facebook or Instagram
are not obligated to pay for this code, but are free to profit hand-
somely from it. This is not unlike a trucking company (Instagram)
using a highway (public code) to transport goods for commercial

purposes (Instagram’s app).

Mike Krieger, one of Instagram’s cofounders, emphasized this point
in 2013, encouraging other founders to “borrow instead of building

whenever possible. There are hundreds of fantastic [tools]...that can save

you time and let you focus on actually building out your product.” *

Some tools that a software company uses are:

Frameworks: Software frameworks provide basic scaffolding and struc-
ture. Think of it as the blueprint for the entire application. Like a blue-
print, a framework lays out how the application might look on mobile, or
how information gets saved into the database. Examples include Rails
and Django.

Languages: Programming languages are the communication backbone
of software, like construction workers on a building site using English to
communicate. Languages help different software components perform
actions and talk to one another. For example, if you create an account on
a website and click “sign up,” that application might use the languages
JavaScript and Ruby to tell the database to save your information.
Popular examples of languages include JavaScript, Python and C.

Libraries: Libraries are “prefabricated” pieces of code that make it faster

to write software, just as a construction company might buy prefabricat-
ed windows instead of building them from scratch. For example, instead

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

n

https://opbeat.com/blog/
posts/picking-tech-for-your-
startup/

HOW SOFTWARE GETS BUILT

of a developer writing their own user login system for an application,

they can use a library called OAuth. Instead of writing their own code to

visualize data on a website, they can use a library called d3.

Databases: Databases store information (for example, user profiles,
email addresses, or credit card information) so that it can be used

throughout the application. Whenever an application needs to remember
something about you, it stores that information in the database. Popular

examples of databases include MySQL and PostgreSQL.

Web and application servers: Web and application servers facilitate

various requests that users make on the Internet. They can be thought of

as dispatchers or telephone operators. For example, if you type a URL
into your browser bar, a Web server will send back the associated page.
If you send a message to a friend on Facebook, your message first goes

to an application server, which determines who you are trying to contact,

then routes your message to your friend’s account. Popular examples of
Web servers are Apache and Nginx.

Some of these tools, such as servers and databases, cost money,
especially as companies scale. This makes them easier to monetize.
For example, Heroku, a cloud-based platform that offers server and
database support, offers basic services for free, but charges for
higher levels of data or traffic. Heroku powers many major websites,
including Toyota and Macy’s, and was acquired by Salesforce.com in
2010 for $212M.%2

Other types of developer tools, such as frameworks, many libraries,
and programming languages, are harder to charge for, and are often

built and maintained by volunteers.

Because these types of tools look more like information goods than

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

12
http://techcrunch.
com/2010/12/08/breaking-

salesforce-buys-heroku-for-

212-million-in-cash/

21

HOW SOFTWARE GETS BUILT 22

services that can be turned on or off, charging for them would
severely limit their adoption. As a result, anyone—whether a bil-
lion-dollar company or a teenage coder—can use these components

to build their own software for free.

For example, one of the libraries that Instagram uses, according to
its homepage, is Appirater. Appirater is a library that makes it easy
to remind iPhone users to rate a mobile app. It was created in 2009
by Arash Payan, a freelance developer based in Los Angeles. Payan

does not make any income from the project.
It is the equivalent of lumberyards, concrete plants and hardware

stores donating their raw materials to a construction company, then

continuing to support the company’s needs.

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

HOW NOT CHARGING FOR SOFTWARE TRANSFORMED SOCIETY

How not charging for software

transformed society

An expected first reaction is: “Why did these developers make their

software free? Why not just charge for it?”

The reasons for public software lie in its rich political and social
history. But first, let’s examine a hard truth: our society wouldn’t be

where it is today if developers hadn’t made it free.

Free software makes it exponentially cheaper
and easier to build software.

Uber, a transportation service, recently announced that some devel-
opers had built a way to request cars through Slack, a team collabo-
ration app, instead of using Uber’s own mobile app. The project was
completed in 48 hours by a team of developers at App Academy, a

coding school.

Uber noted that the team was able to get the project done quickly
because they “implemented open libraries such as rails, geocoder, and
unicorn [sic] to speed up development and build on a solid

foundation.”™? "

https://devblog.uber.com/
uber-slack-a-weekend-a-sto-
ry-of-open-apis/

In other words, the amount of coding that the team had to do them-
selves was greatly reduced because they were able to use free
libraries built by others.

Ruby Geocoder, for example, is a library built in 2010 and main-

tained by a freelance developer named Alex Reisner. Geocoder

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

HOW NOT CHARGING FOR SOFTWARE TRANSFORMED SOCIETY

makes it easy for an application to look up street addresses and

geographic coordinates.'*

Unicorn is a server, built in 2009, which is maintained by a team of
seven contributors listed on its website and headed by a developer

named Eric Wong.?®

It’s easier than ever to build new software, because there are more
prefabricated pieces of code to draw from. To return again to the
construction metaphor instead of constructing every piece of a
building from scratch, one can simply buy a prefabricated framework,

foundation and walls, then put them together like Legos.

As a result, new developers are minted every day, even if they them-
selves don’t necessarily know how to build the tools from scratch.
The Bureau of Labor Statistics expects the number of employed
software developers to rise 22% from 2012 to 2022—much faster

than average, compared to other occupations.!®

Free software is directly responsible for
today’s current startup renaissance.

The cost of starting a company has dropped dramatically since the
first dotcom boom in the late 1990s. Venture capitalist and former
entrepreneur Mark Suster reflected on his experience in a

2011 blog post:

When I built my first company starting in 1999 it cost $2.5
million in infrastructure just to get started and another $2.5
million in team costs to code, launch, manage, market & sell

our software. |[...]

24

14
http://www.alexreisner.com/
about

15
http://unicorn.bogomips.org/
CONTRIBUTORS. html

16

http://www.bls.gov/ooh/
computer-and-informa-
tion-technology/software-de-
velopers.htm

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

HOW NOT CHARGING FOR SOFTWARE TRANSFORMED SOCIETY

The first major change in our industry was imperceptible to us
as an industry. It was driven by the introduction of open-
source software, most notably what was called the LAMP stack.
Linux (instead of UNIX), Apache (web server software), MySQL
(instead of Oracle) and PHP. Of course there were variants —
we preferred PostGres to MySQL and many people used other
programming languages than PHP.

Open source became a movement — a mentality. Suddenly infra-
structure software was nearly free. We paid 10% of the normal
costs for the software and that money was for software support. A

. 17

90% disruption in cost spawns innovation - believe me." =
http://www.bothsidesoft-
hetable.com/2011/06/28/
understanding-chang-
es-in-the-software-ven-

The availability of free software components today (as well as ture-capital-industries/
cheaper hosting and cloud services, like Amazon Web Services and

Heroku) means that a technology startup no longer requires millions

of dollars to get off the ground. Entrepreneurs can conceivably

release a product and find a market without spending a single dollar,

then raise money from venture capitalists only after they’ve shown

strong signs of demand.

Alan Schaaf, the founder of Imgur, a popular image-sharing site and
one of the top 50 most-trafficked sites in the world, famously said
that the only money he ever spent to start the company was seven
dollars to purchase the domain name. Imgur was profitable, and
Schaaf did not take any outside money for 5 years before raising $40

million from VC firm Andreessen Horowitz in 2014.18 18

http://articles.latimes.
com/2014/apr/03/business/
la-fi-tn-imgur-40-million-

Venture capitalists and other institutional investors, in turn, have funding-20140402

started writing smaller checks to companies, giving rise to new

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

25

HOW NOT CHARGING FOR SOFTWARE TRANSFORMED SOCIETY 26

subsets of investing, including:

Seed stage: Venture firms providing the first round of funding, rather
than later-stage growth capital

Micro VCs: Venture firms loosely defined as less than $50 million under
management

Accelerators: Firms that provide small amounts of capital, often less
than $50,000, as well as advice and mentorship to early-stage compa-
nies

$10M can fund a hundred companies today, compared to one or two
in the 1990s.

Free software made it easier for people of all
demographics to learn to code, making
technology accessible to the world.

If you wanted to learn how to code at home today, you might start
by learning Ruby on Rails. Rails is a popular software framework and
Ruby is a programming language. Anyone with Internet access can
install these tools on any computer for free. Because they are free,
they are also very popular, which means there is plenty of informa-
tion online to help you get started, from formal tutorials to ques-
tion-and-answer forums. This means that learning how to code is as

accessible as teaching oneself to read and write English or French.

By comparison, software frameworks and languages that were not

open source required paying for access, using specific operating

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

HOW NOT CHARGING FOR SOFTWARE TRANSFORMED SOCIETY

systems or other tools, and agreeing to licensing constraints that
could affect patents for any software built using the framework.
Today, it is difficult to find examples of frameworks and languages
that are not open source. One of the most famous examples of a
proprietary software framework is .NET, developed and released in
2002. In 2014, Microsoft announced that they were releasing a

version of .NET as an open source project, called .NET Core.
Audrey Eschright, a software developer, wrote about how open
source software helped her learn to code as a teenager in the

late 1990s:

I wanted to learn to program but I didn’t have money. Not the

college student version of not having money—my family situa-

tion was low-income, but also highly chaotic....This is going to
seem strange to anyone [today], but at the time there were
basically two options for someone who wanted to write real
software: you could use a PC with Windows and pay extra for
Microsoft’s development tools, or you could have access to a
Unix system and use gcc....So my goal became to get access to

accounts on Unix systems so I could learn how to write code

and do cool stuff.*?

Jeff Atwood, a longtime .NET developer, described his decision to

use Ruby for a new software project, Discourse, in 2013:

Getting up and running with a Microsoft stack is just plain too
hard for a developer in, say, Argentina, or Nepal, or Bulgaria.
Open source operating systems, languages, and tool chains are

the great equalizer, the basis for the next great generation of

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

27

19
http://lifeofaudrey.com/
essays/love_and_money.html

HOW NOT CHARGING FOR SOFTWARE TRANSFORMED SOCIETY

programmers all over the world who are going to help us

change the world.* 2

http://blog.codinghorror.
com/why-ruby/

With the explosion of startups have come a number of initiatives to
teach people to code, whether they are children, teenagers, under-
served minorities, women or career switchers. Some examples
include Women Who Code, Django Girls, Black Girls Code, One

Month and Dev Bootcamp.

Some of these organizations are free, while others charge tuition. All
of them rely upon free software to teach their students. For example,
Django Girls has taught over 2,000 women to code, in 49 countries

21

around the world.?! Although the organization did not develop -
https://djangogirls.org/
Django themselves, they are able to use Django, which students

download and use for free, in their curriculum

Dev Bootcamp teaches career switchers to code, preparing everyone
from English teachers to military veterans to become professional

software developers. The program costs $12-14,000. Dev Bootcamp

teaches Ruby, JavaScript, Ruby on Rails and SQL, among other com-

ponents. All of these components are free for students to download
and use, and Dev Bootcamp does not have to pay to use these mate-
rials. Dev Bootcamp was recently acquired by Kaplan for an undis-

2

closed sum in 2014.%? 2

https://www.edsurge.com/
news/2014-06-25-dev-
bootcamp-no-longer-boot-

If such critical pieces of software were not free, people from all
walks of life would not be able to take part in today’s technology
renaissance. There are still numerous social and economic barriers
that prevent many more from participating, as well as costs associat-
ed with physical equipment like laptops and an Internet connection,

but the programming tools themselves do not cost money.

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

28

strapped-acquired-by-kaplan

A BRIEF HISTORY OF FREE AND PUBLIC SOFTWARE AND THE PEOPLE WHO MADE IT 29

A brief history of free and public

software and the people who made it

Now that we’ve covered how making software free benefits society,

let’s look at how the software itself came about.

Although we’ve used the term “free software” to refer to software
that does not cost any money to its users, the term “free software” is
actually a highly contextualized term that refers specifically to the
software’s license properties. Free software advocates emphasize
that “free” refers to a political freedom rather than the price, and
sometimes use the Spanish word libre (meaning freedom, as opposed

to gratis, the Spanish word for free price) to clarify the distinction.

In the 1970s, when computers were still a nascent technology, pro-
grammers had to build their own computers and write custom
software themselves. Software was not yet standardized and was

not considered to be a monetizable product.

In 1981, IBM introduced the “IBM PC,” or “Personal Computer,”
bringing hardware to a mass market. Within a couple of years, custom
computer setups fell away as everybody adopted the IBM standard.
IBM became the dominant computer within a highly fractured
personal computer market, capturing over half of market

share by 1986.2 2

http://arstechnica.com/busi-
ness/2012/08/from-altair-to-
ipad-35-years-of-personal-
computer-market-share/2/

Along with standardized hardware, then, came an opportunity for
standardized software. Suddenly everyone wanted to turn software
into a business. IBM hired a then-unknown company called Microsoft

to write the operating system for its new PC. That operating system,

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

A BRIEF HISTORY OF FREE AND PUBLIC SOFTWARE AND THE PEOPLE WHO MADE IT 30

MS-DOS, was released in 1981. Other companies began to follow
suit, offering software under commercial licenses. These licenses
prevented the user from copying, modifying or redistributing

the software.

Proprietary software still exists today: for example, Adobe
Photoshop, Microsoft Windows, or GoToMeeting. While proprietary
software can be profitable for the company that builds and licenses
the product, its restrictions also limit its scope and distribution. Any
changes to the software’s design or implementation have to origi-
nate from the company itself. And proprietary software is expensive,
often costing hundreds of dollars and permitting the designated

purchaser to use only that copy.

Understandably, some computer scientists felt concerned about the
closed and proprietary direction that software was taking, believing
that it undermined the true potential of software. Richard Stallman, a
programmer at the MIT Artificial Intelligence Laboratory, felt particu-

larly strongly about the need for software to be free and modifiable.

Over the next couple of years, as several of his colleagues began
working on proprietary software projects, Stallman felt he could not
ignore the situation any longer. In 1983, he launched GNU, a free
operating system, and in doing so sparked what came to be known
as the “free software movement,” which galvanized a group of
people who believed that software could have a greater reach and
benefit to society if it were made freely available. Stallman later
founded the Free Software Foundation in 1985 to support GNU and

other free software efforts.

The Free Software Foundation defines free software as “software

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

A BRIEF HISTORY OF FREE AND PUBLIC SOFTWARE AND THE PEOPLE WHO MADE IT 31

that gives the user the freedom to share, study and modify it.””* GNU 2%
defines four freedoms associated with such software: m';fifs/.varvevﬁf&gaﬁbow

Freedom 0: The freedom to run the program as you wish, for any pur-
pose.

Freedom 1: The freedom to study how the program works, and change it
so it does your computing as you wish.

Freedom 2: The freedom to redistribute copies so you can help your
neighbor.

Freedom 3: The freedom to distribute copies of your modified versions to

others. By doing this you can give the whole community a chance to
benefit from your changes.? 2

https://www.gnu.org/philos-
ophy/free-sw.html

The free software movement was, and continues to be, deeply
rooted in social advocacy. In 1998, when Netscape released the
source code for its popular browser, the conversation began to shift

from politics to technology.

Some technologists believed that focusing on the practical benefits
of free software would help bring its message to a wider audience.
For example, they pointed out that free software was cheaper to
build and could lead to superior software, because the public can
find bugs and contribute fixes. This type of pragmatism was distinct
from the moral obligation that Stallman and his supporters believed

they had to promote free software.

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

A BRIEF HISTORY OF FREE AND PUBLIC SOFTWARE AND THE PEOPLE WHO MADE IT

These technologists gathered in Palo Alto for a strategy session.
Christine Peterson, a nanotechnologist in attendance, suggested the

term “open source.”?® Shortly after, two attendees, Bruce Perens and ©

http://opensource.org/

Eric Raymond, created the Open Source Initiative. history

Software whose source code is publicly available is called “open
source.” It is analogous to being able to open up the hood of a car
and see what's inside, instead of having the engine sealed off from
view. Open source licenses always include a provision that allows
the public to use, modify, and redistribute the code. In this sense,
there is no legal difference between free software and open source
licenses. Indeed, some people have called open source a “marketing

campaign” for free software.

However, the most important distinction is the differing cultures
that each movement created. The open source software movement
broke away from the social and political associations with free
software by instead focusing on the practical benefits of software
development and encouraging wider creative and business applica-
tions. As Stallman himself wrote, “Open source is a development

. . » 27
methodology; free software is a social movement.” *’ —

http://www.gnu.org/philos-
ophy/open-source-misses-
the-point.en.html

Although “free software” and “open source software” are often
discussed together, they are politically distinct, the former being
more closely associated with ethics and the latter with pragmatism.
(The remainder of this paper will use the term “open source” to

emphasize the critical role it plays in software infrastructure.)
Open source created space for growing distinctions and styles of

software development, free from ethical complexities. One organiza-

tion might release its source code to the public, but only accept

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

A BRIEF HISTORY OF FREE AND PUBLIC SOFTWARE AND THE PEOPLE WHO MADE IT 33

changes from a couple of contributors. Another organization might
require that the code is developed in public and accept changes
from anyone, so that more people could take part in the process. In
1997, Raymond wrote an influential essay called The Cathedral and
the Bazaar (later published as a book in 1999) which explored

these styles.

Today, open source has become a popular software practice for many
reasons, in terms of both efficiency and cost. It’s also how much of
digital infrastructure gets built. We've discussed how making this
software more freely available has benefitted all of society, but

open source has benefits for its creators, as well.

Open source is cheaper to build.

Before open source software existed, technology firms treated
software like any other paid product: a team of employees built
new software internally, then sold it to the public. While this
meant software had a clear business model, it also came with
increased development costs. Proprietary software requires a
full-time paid team to support its development, including develop-
ers, designers, marketers, and lawyers. It’s far cheaper to simply
crowdsource software, built and maintained by a community of

volunteer developers.

Open source is easier to distribute.

People are more likely to adopt software that is free to use and
modify than software that costs hundreds of dollars to license and
was developed in a black box. Not only will developers want to use

it for free, but they might be inclined to tell their friends to use it as

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

A BRIEF HISTORY OF FREE AND PUBLIC SOFTWARE AND THE PEOPLE WHO MADE IT

well, amplifying the effects of its distribution.

Open source is flexible to customize.

Open source software is free to copy and modify for one’s own
purposes, with various levels of permissiveness. This means that if a
developer wants to make improvements to a piece of software, he or
she can copy the project and change it. (This practice is called
“forking.”)

Many popular projects started as a modification of an existing piece
of software, including WordPress (content management system that
powers 23% of the world’s websites?®), PostgreSQL (one of the
world’s most popular and fast-growing databases?®), Ubuntu (operat-
ing system used by 10% of the world’s websites*®), and Firefox (one

of the most popular web browsers in the world*?).

WordPress began as an offshoot of an existing blogging project, b2
(also known as cafelog). Two software developers, Matt Mullenweg
and Mike Little, decided they wanted a better version of b2 and
subsequently forked the project. Mullenweg decided to fork b2,
rather than another project called TextPattern, because b2’s licenses
were more permissive. His original thought process from 2003 is

described below:

What to do? Well, TextPattern looks like everything I could ever
want, but it doesn'’t look like it’s going to be licensed under
something politically I could agree with. Fortunately, b2/
cafelog is GPL [GNU General Public License, a free software
license], which means that I could use the existing codebase to

create a fork.[...]

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

34

28
https://enwikipedia.org/wiki/
WordPress

29

http://www.zdnet.com/
article/as-dbms-wars-contin-
ue-postgresql-shows-most-
momentum/

30
http://w3techs.com/tech-
nologies/details/os-ubuntu/
all/all

31
https://www.netmarketshare.
com/browser-market-share.
aspx?qprid=0&qpcustomd=0

A BRIEF HISTORY OF FREE AND PUBLIC SOFTWARE AND THE PEOPLE WHO MADE IT

The work would never be lost, as if I fell of [sic] the face of the
planet a year from now, whatever code 1 made would be free to
the world, and if someone else wanted to pick it up they could.>? 2
http://ma.tt/2003/01/

the-blogging-software-di-
lemma/

If software were developed in a closed, proprietary environment,
developers would have no ability to change that software, unless
they worked at the company. If they tried to build their own
improved version to imitate the original, they might face intellectual
property concerns. With open source software, the developer can
simply change the software him- or herself and release it to the
public, as Mullenweg did. Open source software, then, enables rapid

proliferation of ideas.

Open source gives employees more
bargaining power.

Software takes time to learn, whether it’s a new programming
language or framework. If every company used a proprietary set of
tools, developers would be less inclined to change jobs, because
their technical skills only apply to that one place of employment.

They would have to be retrained in a new technology at their next
t_SS 33

place of employmen
Thanks to Karl Fogel for

35

reminding me of this benefit.

When companies use open source technology, a developer has a
reusable set of skills, which leads to more freedom to work wherever
he or she prefers. For example, multiple companies might use the
same Ruby programming language in their software. In addition, if
the company’s product itself is open source, the output belongs to
the developer as much as it does the company. The developer can
take their work with them if they choose to leave the company

(versus, for example, being constrained by a non-disclosure

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

A BRIEF HISTORY OF FREE AND PUBLIC SOFTWARE AND THE PEOPLE WHO MADE IT 36

agreement, if the code were proprietary). All of these benefits give
the employee more agency than he or she would have had with
proprietary software. Many companies today advertise their use of
open source software as a recruiting tactic, because it favors

the developer.

Open source has the potential to be more
stable and secure.

Theoretically, when a software project has many active contributors
and a thriving community, the code should be less vulnerable to
security flaws and disruptions in service. That’s because more
people would ideally be reviewing the code, looking for bugs and
fixing any problems that they see. By contrast, in a proprietary
software environment, the only people who would see the code
would be the team of people developing it. Instead of, say, 20 em-
ployees looking at the code at Oracle, a popular open source project
could have 2,000 volunteers reviewing the code for vulnerabilities.
(Note that this belief does not always match reality, and has created
the opposite problem: people mistakenly believing that more people
are reviewing open source software than actually are, when in
reality nobody is taking responsibility. This will be discussed in a

later section.)

Open source software clearly has a number of benefits. How do

these projects collectively fit into a broader ecosystem?

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

How The Current
System Works

"A lot of [our] members work in tech, either on
the web or on software. As a result, they work

on things that don't last very long.”

- Tim Hwang, Bay Area Infrastructure Observatory

WHAT IS DIGITAL INFRASTRUCTURE, AND HOW DOES IT GET BUILT?

What is digital infrastructure, and how

does it get built?

Earlier in this report, we compared building software to constructing
a building. Those public software components are what collectively
form our digital infrastructure. To understand this concept, consider

how physical infrastructure works.

Everybody relies upon a number of physical infrastructure projects
to facilitate our day-to-day lives. Turning our lights on, driving to
work, washing dishes: we may not often think about where our
water, roads or electricity come from, but we have physical infra-
structure to thank. Private and public partners work together to
build and maintain our transportation, sewage, water, electric, and

communication systems.

Similarly, although we do not often see or think about the apps and
software we use on a daily basis, all of them rely upon free and
public code to function. Together, in an increasingly digital society,

these open source projects make up our digital infrastructure.

However, there are several major differences between physical and
digital infrastructure, which affect how the latter is built and
sustained. In particular, there are differences in cost, maintenance,

and governance.

Digital infrastructure is faster and
cheaper to build.

Building physical infrastructure is notoriously expensive. These

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

38

WHAT IS DIGITAL INFRASTRUCTURE, AND HOW DOES IT GET BUILT?

projects are physically large in scale and can take months or years

to complete.

The United States federal government spent $96 billion on infra-
structure projects in 2014, and state and local governments spent a
combined $320 billion in the same year. Slightly less than half (43
percent) of that spending went towards new construction; the re-
mainder was spent on operations and upkeep of existing

infrastructure.®*

Proposing and funding new physical infrastructure projects can be
an extended political process. Transportation funding has been a
contentious topic in the United States for the past decade, where
the federal government faces a $16 billion shortfall for transporta-
tion funding.> U.S. Congress recently passed the first multi-year
transportation bill in a decade, setting aside $305B for highways,
after years of political obstacles that prevented funding infrastruc-

ture from being funded more than two years at a time.*®

Even after a new infrastructure project has been earmarked and
funded, it can take years to complete, fraught with uncertainties and
unforeseen obstacles. The Central Artery/Tunnel project in Boston,
Massachusetts, also known as the Big Dig, took nine years from
planning to initial construction. Its projected cost was $2.8 billion,
with a scheduled completion date for 1998. In reality, the project
ended up costing $14.6 billion and was not completed until 2007,

making it the most expensive highway project in the United States.*’
By contrast, digital infrastructure does not have any of the costs

associated with building physical infrastructure, such as zoning a

location or purchasing materials. This makes it easy for anyone to

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

39

34
https://www.cbo.gov/publi-
cation/49910

35

http://thehill.com/policy/
transportation/255264-mc-
carthy-were-going-to-make-
sure-we-get-the-highway-
bill-done

36

http://www.wsj.com/
articles/house-passes-
five-year-transportation-
bill-1449167609

37
https://enwikipedia.org/wiki/
Big_Dig

WHAT IS DIGITAL INFRASTRUCTURE, AND HOW DOES IT GET BUILT? 40

propose a new idea and get started in very little time.

MySOQL, the second most popular database in the world®® and part of .-

http://www.zdnet.com/

a critical collection of tools that helped launch the first tech boom, artile/as-dbms-wars-contin-

ue-postgresql-shows-most-
momentum/

was published by its authors, Michael Widenius and David Axmark,

in May 1995. It took less than two years to develop.*’ 3

https://enwikipedia.org/wiki/
MySQL

Ruby, a programming language, took less than three years from its
initial conception in February 1993 to public release in December
1995. Its author, computer scientist Yukihiro Matsumoto, decided to
40

create the language after a conversation with his colleagues.*° —

https://enwikipedia.org/wiki/
Ruby_(programming_lan-
guage)

Digital infrastructure changes frequently.

Because digital infrastructure is so cheap to build, the barriers to

entry are lower, and software tools change more frequently.

Physical infrastructure is built to last, which is partially why these

projects take so long to plan, fund, and build. The London

Underground, London’s public rapid transit system, was built in 1863;

the underground tunnels dug for the subway system are still in use

today.”* The Brooklyn Bridge, which connects the boroughs of . o
Brooklyn and Manhattan in New York City, was completed in 1883 Lo Uty
and did not undergo any major renovations until 2010, over one

hundred years later.

Digital infrastructure not only requires frequent maintenance and
upkeep to be compatible with other software components, but its
usage and adoption changes frequently as well. A bridge built in the
middle of New York City will have fairly consistent and guaranteed

usage, commensurate with the rise or decline of the city’s

ROADS AND BRIDGES: THE UNSEEN LABOR BEHIND OUR DIGITAL INFRASTRUCTURE

WHAT IS DIGITAL INFRASTRUCTURE, AND HOW DOES IT GET BUILT?

population. But a programming language or framework could be
extremely popular for several years, then fall out of favor when

something faster, more efficient, or simply trendier comes